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1. SCRAYAFZE  (descriptive research)
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2. %%!'J E’]Eﬁ (predlctlve research)
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3. s AARYA ST (explanatory research)
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X m&\yﬁ(confounder, confounding variable) Ed?
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DWTIIHEEET 2) B,
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- EARD (#2Z) BE% within-person relation
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R B31% causal relation
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B AP DBEATR & K R HE R

XEFE, yEERET D, BE. FEx, L BRy, DD (E
#%@)ﬁ%%%immWT\Mthvaxmwﬁw(ﬁﬁﬁ
D) MEEEFZRAS VDT INEEE TR L,

—>Tlt. PIZISBFEIPEL ENIEEGENEL<HBD (x —y,) ?

-y, (BEERE) ARAT S LT, BE —wam DERAFEL
ATBOLEDIT. FEHAEWVWIEEBGENELL LI ETTE 5,

— (EMTIEHE L) BARORZREFZEA~DEE D LEM,
—-BoFRFEOIEATEANOEZRHRIC [#EATE5]
—EAANRNOHZERICEB T 5 Z & ITRRBHERICAA X,

—FEL D %1@@ ﬁ'&w%@ﬁl%i@@]fot?ﬁﬁ?r%?\)l/@—lt’é?ﬁﬁ%’é_Za
Z & T, HR¥ER ZB S TRREIA R BEIC T B (3k) o

5% | FIEZEE (2016). Eﬁﬂ?&fiﬁﬁ%@f:&b@%ﬁ%?—ﬁﬂﬁT 2 EEANIERED SRS FNEE
R— &M%l 29.513-518. EAANBERADEBDEEMIZ DUV TlEHamaker(2012) H5E 124 5,
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° ﬁ%i@ﬁ/\"i)lx%?\)l/(cross—lagged panel model : CLPM)
Yit = Oyt + Bytlige—1) + YyrTig—1) + dyit ( " ) ) ( ( | ) ; ))

—_ d:cz'
Tit = Ot + PatTi(—1) + Yetli—1) T daig
EEA TR R, di3TEE. {0

(i 2l (i
a9 ( BECEBRE VI REEE (JAXTT) RE

- 2200y HBEL TEHEDOHEEER (reciprocal relation) D HEE 115,
BESEMBEAIEXET U Y) ZHAVLWTHEE I N REIEL>TLhEL
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CLPM

- CLPMIZReciprocal relationz#FE 9 5 HE5& L T, 1980-
NERLUBHEESREZZFOMMIEARERICELL, —D2Dgold
standard & 75 - TUN 5 (Hamaker et al., 2015; Usami et al., 2019a),

CLPMORIEER : * *
Yit = Myt + Yz Yir = BytYie—1) T VytTip—1) T dyit

it — Hxt + 39;5 37;; — thmj;(t_l) + ’Ya:ty;;k(t_l) + dgit
Pot Myt © B SRt DFY x5 Yt BEAIDFTE s DRE
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CLPMA~®D itjitflfl (Hamaker et al., 2015)

Psychological Methods © 2015 American Psychological Association
2015, Vol. 20. No. 1. 102-116 1082-9893X15/812.00 http//dx. do1.org/10.1037/a0038889

A Critique of the Cross-LLagged Panel Model

Ellen I.. Hamaker and Rebecca M. Kuiper Raoul P. P. P. Grasman

Utrecht University University of Amsterdam

The cross-lagged panel model (CLPM) is believed by many to overcome the problems associated with
the use of cross-lagged correlations as a way to study causal influences in longitudinal panel data. The
current article. however. shows that if stability of consfructs is to some extent of a trait-like. time-
invariant nature. the autoregressive relationships of the CLPM fail to adequately account for this. As a
result, the lagged parameters that are obtained with the CLPM do not represent the actual within-person
relationships over time. and this may lead to erroneous conclusions regarding the presence. predomi-
nance. and sign of causal influences. In this article we present an alternative model that separates the
within-person process from stable between-person differences through the inclusion of random inter-
cepts. and we discuss how this model is related to existing structural equation models that include
cross-lagged relationships. We derive the analytical relationship between the cross-lagged parameters
from the CLPM and the alternative model. and use simulations to demonstrate the spurious results that
may arise when using the CLPM to analyze data that include stable. trait-like individual differences. We
also present a modeling strategy to avoid this pitfall and illustrate this using an empirical data set. The
implications for both existing and future cross-lagged panel research are discussed.

Kevwords: cross-lagged panel. reciprocal effects. longitudinal model. trait—state models, within-person
dynamics

CLPMTHEINTWA 27 AR T 7%, AR OEX
(within-personal process) tfﬂﬁaﬁ%(between-person differences) /rlg?'_ L
Y, EARDOEBRZIEL <FHITE 7230y & HEH),

— B 2RFIEOHEH 721 TIZEARNERZHIE T 5 L TRT9,
——2DDOXHE & L Trandom-intercepts CLPM (RI-CLPM) & 3R ZE
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RI-CLPM

Yit = byt HLyi F Y5 Ui = 5yty;<(t—1) T ’Yytf’?;((t—l) + dyit
Lit = Wzt + Lm + 37;; :13;; = ﬁggtxr(t_l) + ’)/g;ty:(t_l) + dmt

Pty lyt BF St 15

Lpi, Ly AENIDRFIERE T (stable trait factor)

xhy vyl BN OBEE far + Luis oyt + Ly 2> DIRE
—{AARNZIL Z KT KD |

-BITFRREIS A B L THALNAEADREEDFEHN G S
Bz, TORERADLZE LI-HFEEEZ, RFEBRTEKIRT 5,

- BHERFOFF0OTH Y. BEFELADRE & ITEMERE & IRE,
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RI-CLPM

-FAFEFZLCEE LI2RFETILEIRZ NS,

- BFERTFIC KBS E. BRANZER (time-invariant) 78 33 F& 2
IC & B E AR ICEMT B (Usamietal, 2019a), L7=A">T. H L
H—Iﬁfﬂ NSRRI E D DN TN D ERT D E,

» BRI 72 BV 2R ICF B ALK (2021438 B S <5 BEIZ000LL )

- RI-CLPM®O &2 DR 12 1%, S EwmE, CLPMII2lE=
THEBIAIEE (Lh L. EEROHT DL < H2,3K 4: Usami et al., 2019b),

- RI-CLPMICHIEREZDFEZX{RE L7=E T JLIZSTARTS & i
X4 % (Usami et al., 2019a), 77" L. ITNHOETFTIIIELIZLIX
R@EEENE LD >N A ZHER T —D D XFULE (Ludtke et al., 2018)
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pANIRI=E =

- & E(MLE) TIERI-CLPMTARBESEAE U=, —DDETTILZ
NFNTRA XHETE (blavaanz#B) Z1T-7-,

- ZZTCIEIEBBADER E LT, BREIT/RXRRE - EDENDFEL &
WS GEW) REDH & THT,

- B ERZE(BIC,DIC,WAIC) DER = Ah © IZRI-CLPM D A AR LY,

- CLPMTIEWIT NORXEEIERY (y) LEOHTEE T, Hit=1
IZHBEICKR D,

* RI-CLPMTHEOHEENR NI A, XEELERBOEEXEIL
WITNHL0EEL, COLSICLIFLIERNETIETENLS |

 BUOBATH, SEHOHEO > BERRF OHEAEH B EA
£40-50%1 &, —EADEHEEHHIT 2 2 & DEBI,
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DM DHEFT (lavaan & blavaan)

* SEMIZ & 27 1L. Mplus, OpenMx, R(lavaan, sem/ < i — ),
Amos, Onyx7s K8 k4 7Y 7 b7 = 7 H o EITAEE,

lavaan

latent variable analysis Aboutlavaan Tutorial Resources  Version History

Y Iavaan (Rosseel’ 2012) 0) H P (/r \/ X l\ _ )[/)(\3 :l _ F1§|J) Tutorial Another important type of latent variable models are latent growih curve models. Growth modeling is ofien used to analyze

o longitudinal or developmental data. In this type of data, an outcome measure is measured on several occasions, and we
VEEw want to siudy the change over time. In many cases, the trajectory over ime can be modeled as a simple linear or quadratic
Before you start curve. Random effects are used to capiure indvidual difierences. The random effects are convenientiy represented by
h tt S " / / I aV a an u e nt b e / Installaion (continuous} fatent variables, often called growth factors Inthe example below, we use an arical dataset called
. " " Nod . Deno, growth where a score (say, a standardized score on & reading ability scale) is measured on 4 fime points. Tofita
Model s ) A . . . .
el syt inear growth mode for these four fime points, we need to specify a model with two latent variables: a random infercept,
ACFA example and a random slope:
A SEM example
Modelsynax 2 # linear growth model with 4 timepoints

N ) # intercept and slope with fixed coefficients
[ :? 1 }: j [/ ° | N I\ I eansiuryes i= 1%+ 1% + 0 4 10
— Multiple groups s = Q1 + 1712 + 213 + 3°4
Growih curves

httDS ://I avaan ) u q e nt_ b@/tuto r i al/tu tO r i al . Ddf ( % Eg Calegoral data In this mode!, we have fixed all the coefficients of the growih functions. Ta fi this mode!, the lavaan package provides a

special growth() function:

Covariance mafrix input

http://www.ec.kansai-u.ac.jp/user/arakit/documents/lavaanTutorial20170124.pdf (HZAEE)
S HFER (2014). EEUSEDTTRIRE FERXE

e blavaan (Merkle & Rosseel, 2018) I1Z & A SEM D N A XHEA 1 E4T77],
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https://lavaan.ugent.be/tutorial/tutorial.pdf
http://www.ec.kansai-u.ac.jp/user/arakit/documents/lavaanTutorial20170124.pdf

LA L. Bllz& 5 BETIMITRLSD S

fBICH . REEEFREZEOHAET LE LT, AIZIL
(1) latent change score (LCS) model (Hamagami & McArdle, 2001; McArdle & Hamagami, 2001),
(2) autoregressive latent trajectory (ALT) model (Bollen & Curran, 2004; Curran & Bollen, 2001),

(3) (abivariate version of) stable trait autoregressive trait and state (STARTS) model
(Kenny & Zautra, 1995, 2001).

(4) Latent curve model with structured residuals (LCM-SR) (curran et al., 2013)
*Z N5 5| FSCERIC D W T idUsami et al (2019a) %= S 13,

c INODETIVIERLG DD SRES N, RIS IZEAPRBIRDHEA
eRHMLTHEEINLCODLH LD, CNoDETABOERIL, (O
) GEHFENRTLHEYPRICEHRINTLAL, ZHZH, Z0
SOBMMODETILOFEER. 9 LHRIAON TV,
cEROISAMIETCIE. B—0 2 a X527 EFTIL (£IZCLPM) D IAH
PREGRAL CMBEND ZENE < REROBR GRERIANZLOH
APCHRRMERR) & ITRBEL 2R e R > TW 5,

- LAb, INOMOETILOEIE, CLPMEIFLIFLIFE<EAR 72
Bz Rd Z & HHRERRYIZED 5 41T LN B (Usami et al., 2019a; Orth et al., in press)o

FEIOEFS  2021/03/31 F{EEE



> ¥ >
g 2x=
QL=

ll
]| oo
| S

Psychological Methody [
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1082-989X/19/812.00 http:/idx.doi.org/10.1037/met000021

A Unified Framework of Longitudinal Models to Examine Reciprocal Relations

Satoshi Usami Kou Murayama

Tit = frit + €xit

Unified Framework

Vit = fyit + €yit
y Y

University of Tokyo University of Reading and Kochi University of Technology . *
f:cit - [ufﬂt T {[:m T (t - 1)5392}] T f:m',t

Ellen L. Hamaker

Utrecht University

i f yit — ﬂyt + {
fmt {A$%+(t 1) wl}-l'ﬁit' :mt 1 +%3fy@t 1 +dmt
B,

iiu}iex and di Irel h
inal models can ive
n] nlr dll 1dl = I:;i fy?}t { y@ + ( ]' TJ} + /By 'y’l

I11 rring reciprocal effects or causality between variables is a central aim of behavioral and psychological
rh T address rec }r l II cts. a variety of longitudinal models that include cross-lagged

esearc
rhri)l 1lhlktm ll -
Hr mework that clarifies lh conceptual a 1d ma
lh models. The unified framework shows that ex
ed on whether the mo d | posits unique fac
mmon factors are used to model changes. The latter is essential to understand how :
internrefed We also nresent an examnle nsino emnirical data to demonstrate that there is

?ﬂ}] T fy?,t

+ 7yfm t-1) T dW

Usami,S., Murayama,K., & Hamaker,E.L. (2019). A unified framework of longitudinal
models to examine reC|procaI relations. Psychological Methods, 24, 637-657.

https://psycnet.apa.org/fulltext/2019-21491-001.pdf

- Bk A R E T IVEIOBEER - 4‘@%&,\5’]
- BARNZZmiEd 5

==

=

R

(S
FIDHEDD LD

THY. (ALT,LCS,LCM-SRD L 512) S+ A Bl b3t
S5 EITH - TEFEFHEE (overadjustment) = FFK T 5 Z & = F5H4.,
- RI-CLPMIZTEARNZAL #3122 2 L TEMARAETIEIH B D, #E
SR TIEA W, ISEHM = BYICET Y VI TEBHIENEE,
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MDETILORIESIE? (1)

Yit = Lyi H(E = 1)Syi[+ yip vy = 5yty;<(t—1) T ’Yytx;((t—l) + dyit
Tit = Lpi H (= 1)Sei[+ 25y Ty = 53:1&37:@_1) + ’Yxty:(t_” + dyit

CUDRDHYIC, LGM (BEKRKRET L) DL ICHRKRRETF
(growth factor) |, SZ AN 5, — x*, y* IIERARZE =z L. yIZEA
NELDEIRERT & WD ERAIN TS,

- LA LE—-1SDIEICK 5T WHrErELI0H2) BADEA - B
ROBDZFRIR s LI-EOSTH 5x", y'OEFREZETY ~
JLTWBz0, REYIEFBETH I LDRKRIFZLVLVDTIE?

— “throwing the baby out with the bathwater”, resulting from

wrongly controlling S (Usami et al., 2019a).
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MDETILORIESIZ? (2)

LCS CHlFEEz=%xE L 4 W54 unified framework |2 & 3 3%18)

Yit = Yt Yip = Ayi + ﬁytyi(t—l) + ’Yytxi(t—l) + dyit
Lit = 37;;5 33;5 = Agi + /Ba:tm;((t_l) + %ty;"(t_l) + dyit

ﬁﬂﬁwﬁ(m¥>?ma<\37ﬁ%®n%®ﬁ<ﬁ
F) ICHBRF (A) PEENTVLS

- FHERT (1) CHBRFAOHEZR - BIENEENIIREL S,
AL Z 15K+ (accumulating factor) & FE (X410 5 (Usami et al., 2019a).

FFERFIEERROBANEICK L TEENEDOFE TOIRE
592 o0|Zx L. accumulating factorld & 3 R ~DEF S H
MORRETCRBLADYOoRET 5, 2 YHEEDNRLD D,

— “throwing the baby out with the bathwater "FIRE D’ LCSTHE L 5,
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cALTTHLCSEREEBROBEENNE L. EANZLDOBE R A
RIS 2 BB WTIBEY) Tl AL,

IREFTLLLABEINBEIRTE T /L (dynamic model) |[Z & F
N 5B AZHE DIE $ accumulating factor & 2R T E 2,

c (FUEHERS) BERLET VADOZ X LYES
(@Y RE> &Y 7% L7RWEY) accumulating factorz =
kL. FHERTFEIZER S,
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MDETILORIESIZ? (3)

GCLM (zyphur et al., 2020ab; unified framework (= & % 5%3])

Yit = Yir Y = (6= 1)Byi + Bye¥ir_n) + WeTie—1) T 0pedyige—1) + Cueluige—1) + dyit
Lit = 5’3;} zjy = (t—1)Byi + 53:1&33?(,5_1) + %ty;"(t_l) t 5:stdm(t—1) + Cotlyi(r—1) + dyit

L - STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL : ROUtIEd_ge
* H:TI_]': Q E/\] 73: §(\jJ % 75_’ %) O aCCU m u I atl ng https://doi org/10.1080/10705511 2020.1821690 E Talor &Francis Group
factor ( B) ):- 5%77 EjJ IIZ i/;j I/E\ (d(t-l)) % + 8 OPEN ACCESS B oo

7_—‘\ I) % 7“0 On the Differences between General Cross-Lagged Panel Model and
Random-Intercept Cross-Lagged Panel Model: Interpretation of Cross-Lagged
Parameters and Model Choice

- ZDETIVERI-CLPM®D £ 5 (T swiven
FERT ()2 #HeH) L Thay,

ABSTRACT
\E o Many methods have been developed to infer reciprocal relations between longitudinally observed
R 7 |‘7 I\ jj % ~ J :E h— t L/ variables, Among them, the general cross-lagged panel model (GCLM) is the most recent development
) -A\ OD /7 \l ; } b T as a variant of the cross-lagged panel model (CLPM), while the random-intercept CLPM (RI-CLPM) has
NS ~ N 75— rapidly become a popular approach. In this article, we dascribe how common factors and cross-lagged
Lj: 4‘% H B [_, 7 % 75\ N 'f A I: :_I @x\ /f t, 0) E'g parameters included in these models can be interpreted, using a unified framework that was recently
N — developed. Because common factors are modeled with lagged effects in the GCLM, they have both direct

D > =| =\ S e %
T =5 ( 7 ) \ 75\ Lj: and indirect influences on observed scores, unlike stable trait factors included in the RI-CLPM. This
,T% ?ﬁ j:E )(3 5 N EE I:IH:H E E/] b indicates that the GCLM does not control for stable traits as the R-CLPM does, and that there are
interpretative differences in cross-lagged parameters between these models. We also explain that

1@ é 79: L \ o (U Sam i, in preSS’ Structu ral including slych ec(;)mmon factors as well as moving-average terms in the GCLM makes this interpretation
_ . very complicated.
Equation Modeling)
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Unified framework (&2 < T /LA OB B %

Unified framework

measurement error,
trait factor (I)

No measurement error,
accumulated basehne
factors (A, B)

No MeasureIment e11or,

erowth factors (I, S)

Hamaker (2005)

NO Imeasurement
error
(Hamakeretal. 2015)

ALT

no trait
factor

[ TOM-SR

+ . v
no autoregresave and RI-CLLPM
3 ' cross-lageed coefficients
no accumulated factor, "4
(B) (conditionally when * TCS
measurement enor s _
assumed) in ALT B factor loadings no trait factor
(Bollen & Cuwrran, 2004 % = accumulated factor (A) factor CLPM (Hamaker et al, 2015)
1s constant
._ (Usami et al., 2015)
‘ 1.CS no measurement
no autoregressive and s
cross-lagged coefficients ' CLPM
(conditionally when
measurement ermor LCM i
s acsumedin T CM: (Usami et al., 2019a)
I\rIcArdle 2009)
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CETODERLD

- ARERICESLY 2 ETEANBRICER T2 ZEDNBETH V.,
ZD=-HIZIFE CRIBECEHERFICL 256 - T YU I DER,

—HETT YA DXy b

ZHDZRIND AL DOERZFANZ B TH B INTZ/-CLPMIZ
%@l%%%%szb¢MAW®%%%%ﬁ¢%ifT+Ao

c AMARNBEBROBIEZEN LE-ETIIRELOETILLEZ CIBEX
NTELD, HE2 - HENBREBIRIEF TCAEINTIAEL >,

c BTN EMBBEREZZ NS FERTZET Y 7 L7ARI-
CLPMIZEARNBERZHIET 5 L TC—D2DBMR AL, AEEFKN
IZICAEDEHR, TR ORI D EFL L TUL 5 (Orth et al., in press)s,

e RI-CLPMDERICIZT=3D 5tk T — X H W E,
*RI-CLPMTH > TH, HY D AXEEH A @I

=
LET YUV 50EBEIIE DLW, Mtk 4
2. EARZNICEDC) RHRERD A EIIEZHRER



AT I 1T 2 R RHERDEE L &

- TR TlE. FRET D RXIER = A5l ICZ X N
L5 DEMRICOWTIELLK ETLAEEZ T DLEND 5,

X[ X1 X3

* YO REEFEATOH
BHAIN2EE

o HEREHLIFITIRDMIIZHX)ET T A LN)DRNFIZFE,
e NEYIBETVYIOH (ZOETLTIHERROXIIFE
ADAEELEHDIEEOEWNAZEETETTLALY)

Yi = o+ [1241 + Pomio + Pais + ilin + Y2lio + 3lis + €
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- XEXTDODAGICED(SEMAEZERT 5 A EIF—2,

- 7272 L. ZHEOBEBRIVERPICHEEEN rET L)
THRTED LV SBMRENBEDSEM (& HPEHFET
L+ RZEFIL, RI-CLPMEE) (21EH Y . ZHIZ LIE L IEEET
IR SRR D SR T REFIAYICIE R © 415 (Hong, 2015) o

- B - REEE T, B3 E T T /L (Marginal Structural
Model : MSM Robins, 1999; Robins et al., 2000, Robins & Hernan, 2009)%°
IS 1 X YT E T )L (Structural Nested Mean Model: SNMM, Robins,
1994) & FE XN A SEMUAN D T EwRHA R CAIB I NS,

~

BN DNER - BERNFHE TN DAEDE
BEIL D N A, MSMIZD W T FES = AR ES T H
H1-H. FORAAEIPEZ TETTWS,
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AR %= ST RI-CLPM®D —%38

Y) ¢ (V) s Y) s Y
zk_al(c )Y'(k 1) _|_/6k: )X (k— 1)+’Y/£ )L(k 1)‘|‘d( )
Xpo= o Y+ B X+ L+ dY)

L L) v« o X
Ly = ay (k1) T By Xik—1) 7 )Lz’(k—l) +di,
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o [EHE1E T T /L (Robins et al., 2000; VanderWeele et al., 2011)

E(Y X1, X2, X3) = a+ Bixin + Boxiz + B33
> YO SEREL TCOA AN GZEICEICFIHASINS,
S EFRROXICEDL A IEERLDO T — X2 EICETROE
HrBFRICEE LT, TNZ2EICEAMTZEITZITL,

(k4 BAREH DO EE b OERMPRE L hTn) FHEHHNLXDE
ZHETET b,

s Tl L, BEADETHERD FBIIBEHEALWEEID) NEE
IZIR )R T W EA—RICE SN T WS,

- Usami (2020) TlE. BN FROENANEENELD % FF 2T
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