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企画趣旨

　教育心理学研究において，データの欠測は悩ましい
問題である。欠測データの処理としては，削除法（リ

ストワイズ削除・ペアワイズ削除）や，各変数の代表値など
を代入する単一代入法がしばしば利用されてきた。し
かし，これらの方法を利用した場合には，推定のバイ
アスや検定力の低下など，推定上のさまざまな問題が
生じうる。とりわけ削除法について，Wilkinson & 
Task Force on Statistical Inference APA Board of Scien-
tific Affairs （1999） は，基本的な統計ソフトウェアに実
装されている方法の中で「最悪の方法」と評している。
そのため，削除法や単一代入法のような古典的な方法
ではなく，完全情報最尤推定法や多重代入法を利用す
ることが望ましいとされている。これらの方法が十分
に機能しない場合もあるが，古典的な方法と比較すれ
ば基本的にはより望ましい方法とされている（Baraldi & 

Enders, 2010）。しかしながら，『教育心理学研究』では，
欠測値の存在やその割合等について説明していない論
文や，削除法を用いている論文が多いという問題があ
る（杉澤, 2011; 鈴木, 2018）。そこで本チュートリアル・セ
ミナーでは，欠測が生じるメカニズムと，古典的な方
法の問題点について理解を深め，完全情報最尤推定法
と多重代入法の考え方，および統計ソフトウェア Rで
の実行方法について理解することを目的とする。
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データが値として得られなかったものを欠測値といい，
欠測値を含まないデータセットは完全データ，欠測値
を含むデータセットは不完全データと呼ばれる。従来
適用されてきた古典的な欠測データ処理の方法として，
削除法と単一代入法がある。削除法はさらに，欠測値
が 1つでも含まれる観測対象（実験参加者など）を全ての
分析から除外する「リストワイズ削除」（listwise deletion）

と，分析ごとに，使用する変数に欠測が生じている観
測対象のみ削除する「ペアワイズ削除」（pairwise dele-

tion）の 2種類に分けることができる。また，単一代入
法とは，欠測となったデータに対して，何らかの方法
により求めた 1つの値を代入する方法である。単一代
入法にはさまざまな手法が提案されており，欠測値の
全てに当該変数の平均値を代入する「平均値代入法」

（mean imputation），他の観測された変数を説明変数とす
る回帰式によって求めた予測値を，誤差を加味せずそ
のまま代入する「確定的回帰代入法」（deterministic 

regression imputation）などが知られている。これらの古
典的な方法による欠測データ処理は，多くの場合で推
定結果にバイアスが生じ，さらに，削除法ではサンプ
ルサイズが減少することで標準誤差が増大して推定精
度や検定力の低下が生じ，単一代入法でも標準誤差の
評価が適切になされないなどの望ましくない性質を持
つことが知られている。
欠測が生じるメカニズム
　欠測データ処理の方法が妥当であるか否かには，当
該データにおける欠測メカニズムが関係する。欠測メ
カニズムとは，欠測値にも本来得られるはずであった
真の値が存在するものとして，欠測が生じなければ得
られるはずであった「完全データ」を所与としたとき
に，どのデータが欠測するかという欠測の出現パター
ンに関する条件付き確率として表される。すなわち，
本来得られるはずであった完全データ行列を Yとし，
Yの各要素について実際に観測されるものを 1，欠測
となるものを 0と置き換えた「回答指標行列」を R，
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実際の観測データを Yobsと表すと，欠測メカニズムは
P(R |Y)と表すことができる。欠測データ処理に関する
文献では，Little & Rubin （2002） が提案した枠組みに準
じた欠測メカニズムの分類が一般的に用いられる。そ
の分類とは，（1）欠測となる確率がデータのあらゆる
要素と無関係に定まる，つまり，変数ごとに一定の確
率で欠測となるデータをランダムサンプリングしたと
見なすことができ，P(R |Y)＝P(R)となる「完全にラン
ダムな欠測」（missing completely at random: MCAR），（2）
欠測となる確率が実際に観測されたデータの情報だけ
で定まり，他の変数の実際に観測された値を一定に統
制すれば欠測した変数自体の値とは関係がない，
P(R |Y)＝P(R |Yobs)となる「（条件付きで）ランダムな欠
測」（missing at random: MAR），（3）欠測となる確率が欠
測したデータの値に依存し，実際に観測されたデータ
の情報だけでは決まらずP(R |Y )≠P(R |Yobs)となる「ラ
ンダムでない欠測」（missing not at random: MNAR，または

not missing at random: NMARと呼ばれることもある）の 3種類
である。これらの欠測メカニズムは，（1），（2），（3）
の順に，後にいくほど妥当な分析結果を得るためによ
り高度な手法を要求する。
　なお，ここで注意すべきは，（2）のMARについて，
欠測が生じるか否かは必ずしもその変数の値自体と独
立である必要はないということである。たとえば，入
試成績と入学後の成績の関係を調べる状況において，
入試成績で合格ライン未満である人については入学後
の成績が全て欠測となるので，両変数間に強い正の相
関関係があれば，欠測となるのは入学後の成績が相対
的に低い人ということになる。この場合であっても，
入試成績が同点である下位集団ごとに見たときに，合
格ライン未満の人は欠測確率が 1，合格ライン以上の
人は欠測確率が 0となる（あるいは，入学後の成績が悪い人

ほどドロップアウトしやすいというような傾向がなく，下位集団

内では一定の確率で欠測が生じる）のであれば，MARとい
うことになる。

　実際の研究で得られたデータの欠測メカニズムがど
れにあたるかについて，MCARであるか否かは Little 
（1988） の検定などの観測データに基づく判定法が提案
されている。しかし，MCARとはいえない場合に，
MARとMNARの区別を観測データのみから行うこと
は極めて困難であるといえる。
古典的な欠測データ処理に関するシミュレーション
　古典的な欠測処理の方法を適用した場合に実際にど
のようなことが起こるかについて，人工データを用い
たシミュレーションによって確認する。2 変数 y1 と y2
があり，各変数は平均がいずれも 50，分散がいずれも
100，相関係数が.60 である 2変量正規分布に従う母集
団からサンプルサイズ 200 の標本を抽出するとき，y2
にのみ欠測が生じる状況を想定する。欠測メカニズム
として，y1 の値にかかわらず確率.5 で y2 が欠測する
MCAR条件と y1＜50 のとき確率.1，y1≧50 のとき確
率.9 で y2 が欠測するMAR条件の 2条件を設定する。
欠測値処理の方法として，リストワイズ削除（以下では

欠測のない y1 のみを用いた推定を行わないのでペアワイズ削除と

見なすこともできる），平均値代入法，確定的回帰代入法
の 3手法を適用し，それぞれの処理を行った疑似的な
完全データに対して，y2 の平均と分散，および，y1 と
y2 の相関係数に関する推定を行う。平均については R
言語の mean関数と t.test関数による点推定値および
95％信頼区間（CI），分散と相関係数についてはそれぞ
れ R言語の var関数と cor関数による点推定値を採用
する。完全データの生成から，不完全データの生成，
欠測値処理，各種統計量の算出に至る一連の処理を
10,000 回反復し，その結果をまとめたものが Table 1
である。Table 1 では，平均，分散，相関係数の点推定
については 10,000 個の推定値の平均を，平均の区間推
定では 10,000 個の 95％信頼区間について，信頼区間
の幅の平均と，真の母平均である 50 を含んでいるもの
の割合（被覆率）を示している。さらに，欠測を発生さ
せる前の完全データで同様の推定を行った結果につい

Table 1
古典的な方法による推定結果のシミュレーション

完全
データ

MCAR MAR

リストワイズ
削除

平均値
代入法

確定的回帰
代入法

リストワイズ
削除

平均値
代入法

確定的回帰
代入法

平均  50.0 50.0 50.0 50.0 53.7 53.7 50.0
分散 100.1 99.9 49.7 68.1 85.2 43.7 69.6
相関係数 .598 .597 .421 .725 .494 .271 .716
95％ CI幅 2.79 3.96 1.96 2.29 3.60 1.84 2.32
CI被覆率 .952 .951 .670 .789 .019 .001 .703
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ても参考として掲載している。
　Table 1 から，まず，欠測メカニズムがMCARであ
るとき，リストワイズ削除で欠測値処理を行った場合
には，平均，分散，相関係数の点推定値の平均と母数
の真値がほぼ一致しており（すなわち，バイアスが生じてい

ない），95％信頼区間の被覆率も実質的に理論値通りの
ほぼ 95％となっていることがわかる。ただし，リスト
ワイズ削除によりサンプルサイズの期待値が 100 に半
減することに伴って標準誤差が理論的に 2  倍となる
ことを反映して，信頼区間の幅が約 2  倍になってい
る。標準誤差の増大は，検定の文脈では検定力の低下
につながるものである。また，MCARのもとで平均値
代入法や確定的回帰代入法を適用した場合は，平均の
点推定のみバイアスのない結果が得られているが，分
散や相関係数の推定ではバイアスが生じ，また，平均
の信頼区間に関する結果からは標準誤差を過小評価し
て誤った推測が行われていることがわかる。標準誤差
の過小評価は検定の文脈では第 1種の誤りを設定した
有意水準以上の確率で犯すことにつながる。
　次に，欠測メカニズムがMARであるとき，確定的
回帰代入法により処理したときの平均の点推定値のみ，
バイアスのない結果が得られているが，標準誤差を正
しく評価できずに誤った信頼区間が得られている。こ
れ以外の欠測値処理方法と推定量の組合せでは，いず
れも点推定値にはバイアスが生じ，標準誤差の大きさ
も正しく評価されていない。
　以上より，削除法や単一代入法による古典的な欠測
値処理では，欠測メカニズムや対象となる母数の組合
せによっては妥当な結果が得られることもあるものの，
その条件は限定的であり，多くの場合に無視できない
不適切な分析結果が得られるということができる。
実際のデータ分析における欠測値処理
　欠測メカニズムがMCARの場合，一般的な研究の文
脈では，標準誤差や信頼区間を求めたり検定を行った
りすることが多い現状をふまえれば，妥当な分析結果
が得られるリストワイズ削除はひとつの選択肢となり
得るが，常に標準誤差の増大を伴うことから望ましい
方法とはいえない。ペアワイズ削除はリストワイズ削
除よりも標準誤差を小さく抑えられる可能性はあるも
のの，3 変数以上の場合に完全データからは得られる
ことのない（具体的には，半正定値でない）相関係数行列が
得られて多変量解析の適用に支障をきたすことがある。
したがって，MCARの場合であっても古典的方法によ
る欠測値処理は推奨されず，MCARおよびMARの場
合においてバイアスのない推定が可能であり，標準誤

差を小さく抑えることのできる完全情報最尤推定法や
多重代入法が現在推奨されている。MNARの場合は，
各データの欠測確率を説明する適切な補助変数を加え
ることでMARと見なせるならMARと同様の処理とな
る。そうでなければ回答指標行列 R（あるいは Rの 0と 1

を入れ替えた欠測指標行列としても同じ）の具体的な確率モ
デルを指定する必要がある。これらの手法については
この後続く話題提供を参照されたい。

完全情報最尤推定法と多重代入法
宇佐美 慧

　MAR に基づく欠測下では，リストワイズ削除によっ
てデータの削除を行うと多くの場合に推測上のバイア
スが生じ，標準誤差も不当に大きくなる。完全情報最
尤推定法（full information maximum likelihood: FIML）や多重
代入法（multiple imputation: MI）はMARに基づく欠測下
において有用な処理法である。
　FIMLは，各個人（対象）の観測データのみを用いて
母数を最尤推定する方法であり，補完（代入）は伴わな
い。観測データのみに基づく尤度は直接尤度（direct 

likelihood; または観測尤度や完全情報尤度）と呼ばれる。仮に
欠測がない場合，通常の尤度関数は直接尤度に対応す
る。MIでは，補完モデルと乱数を用いて欠測値を補完
し，疑似的な完全データセットを複数作成する。そし
て，関心のある分析モデルをそれぞれあてはめ，推定
結果を統合する。このように，補完モデルと分析モデ
ルが明確に区別されるのが特徴である。
　MARが仮定でき，また分布仮定を含めモデルを正し
く設定できれば，一般に最尤推定量（つまり，FIML）は
良い特徴（e.g., 標準誤差の小ささ）をもつ。特に，SEM

（構造方程式モデリング・共分散構造分析）で表現可能な下位
モデル（e.g., 回帰分析モデル，因子分析モデル，パス分析，潜

在成長モデルなどの種々の縦断モデル）を分析モデルとする
場合にFIMLの実装は容易である（Newsom, 2015）。一方，
MIの方が有用，あるいはその使用が現実的と考えられ
る場合も多くある。例えば，自治体によるデータの二次
利用を目的とした補完を行う場合のような，補完の実
行者と分析者が異なる状況が関係する。このとき，MI
では，個人情報が特定される恐れのある共変量（補助変

数）に欠測が仮に依存している場合でも，このような情
報を含めない（複数の）完全データセットを提供可能で
ある（高井他, 2016）。他にも，テストや心理尺度等を通
して，その項目和得点を用いた分析や実践を行う場合，
補完を行うMIは直接的で有用であり，またそもそも
統計分布や最尤法を前提としない多変量解析法も多い。
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　チュートリアルでは以上のように，FIMLとMIのそ
れぞれの基本的な特徴と使い分けのポイントについて
概観してから，各方法の詳細を説明した。その後，補
助変数の活用についての補足とともにまとめを行った。
当日の発表スライドは https://usami-lab.com/教心
チュートリアル 2024_宇佐美.pdfのリンクから参照可
能である。
FIML
　上述の通り，FIMLでは観測データのみを用いた直
接尤度を構成し母数を最尤推定する。その際，個人ご
との尤度を考える。また y1 と y2 の間の母相関係数を推
定したい状況を考える。直接尤度は，個人 1の尤度×
個人 2の尤度×個人 3の尤度…×個人Nの尤度，と表
現できる。仮想データに基づくMAR の欠測例として，
1 次試験の得点（y1）が低い受験者が足きりにより 2 次
試験の得点（y2）に欠測が生じる場合を考え，リスト
ワイズ削除による分析と FIMLを行った場合の結果を
示した。すなわち，リストワイズ削除では母相関係数
が大幅に過少推定され，一方で，FIMLの場合では母
相関係数に近い値が推定される。
　（教育）心理学研究では，SEMを用いたモデルの推定
や評価は広くなされている。例えば，回帰モデル，因
子分析モデル，パス分析，媒介モデル，多母集団モデ
ル，潜在成長モデル，交差遅延モデル等の縦断モデル
は SEMの範疇で表現可能である。また，SEMでは一
般に，複数の潜在変数と観測変数を伴う線形モデルの
表現が可能で，現在でも様々な拡張が行われている。
　最尤法は SEMで最もよく利用される推定法であり，
直接尤度（FIML）の構成も直接的かつ容易である。Rの
lavaanパッケージ（Rosseel, 2012），Mplus等の SEMの
標準的なソフトウェアでは FIMLに基づく推測が容易
に実行できる。
　SEMでは，データの標本平均・（共）分散と，分析モ
デルの平均・（共）分散が「近く」なるように，分析モ
デル内の母数 θを推定する。後者は平均構造 μ（θ），共
分散構造 ∑（θ） と呼ばれる。最尤法では通常，多変量
正規分布に基づく尤度の最大化によって，これらが

「近く」なるような母数 θの推定を行う。欠測がある場
合の直接尤度は，各個人で観測された変数に対応する
μ（θ），∑（θ） の一部要素を利用することで表現できる。
　チュートリアルでは具体例として，SEMに基づく回
帰分析モデルの推定と直接尤度の表現を説明した。も
ちろん，回帰分析モデルに限らず，SEMで表現できる
下位モデルであれば個々のモデルに応じた μ（θ），Σ（θ） 
の表現が可能なので，欠測があっても先と同様の方式

の下で直接尤度を構成し母数を推定できる。
　チュートリアルでは主として，観測データの多変量
正規性を仮定した SEMの FIMLを説明したが，MAR 
に基づく欠測下では通常，変数間が線形的な関係であ
れば，分布が非正規である場合にも θの推定値は一致
性をもつ（Nが大きくなれば真の値に確率収束する）ことが
知られている（e.g., Yuan & Bentler, 2010）。
MI
　例えば，確定的回帰代入を行う（補完モデルとしての回

帰分析モデルから得られる条件付平均による予測値を補完に用い

る）方法は，残差分散や補完モデルの（切片や回帰係数，

残差分散についての）推定誤差を考慮していない。結果と
して，例えば先の例で挙げた，1 次試験の得点（y1）が
低い受験者が足きりにより 2次試験の得点（y2）に欠
測が生じる場合では，y2 の分散が過少推定される。
　MI （Rubin, 1987） はベイズ統計学の枠組の下で構築さ
れた，汎用性の高い欠測データ処理法であり，3 つの
ステップから構成される。すなわち，補完モデルと乱
数を用いて欠測値を補完し，疑似的な完全データセッ
トを複数作成する補完ステップ，各完全データセット
に対し関心がある（確認的因子分析モデルなどの）分析モデ
ルをそれぞれあてはめ母数 θを推定する分析ステップ，
そして得られた複数の θの推定結果を統合する統合ス
テップである。冒頭で述べたように，MIでは，補完モ
デルと分析モデルが明確に区別される。またMIは，
SEMの文脈でも実装は容易であるが（lavaanやMplus），
SEMによる表現が困難なモデルに対しても汎用的に利
用できる。
　MIには，大別して，欠測のある変数についての同時
事後分布を用いる方法（joint modeling: JM）と，完全条件
付分布を用いる方法（fully conditional specification: FCS）の
2つがある。JMでは通常，欠測のある変数が多変量正
規分布に従うことを仮定する。対して，FCS では，欠
測のある変数について，他の全ての変数が所与の下で
の完全条件付分布を用いて補完し，その作業を各変数
に対して行う方法であり，汎用性が高い。特に，FCS 
のアルゴリズムとして，連鎖方程式によるMI （multiple 

imputation by chained equation: MICE; van Buuren & Groothuis-

Oudshoorn, 2011） は近年特に広く利用されている。
チュートリアルではMICEに基づく多重代入法につい
て説明した。
　MIの最初のステップである補完ステップは，補完モ
デルの設定，初期値の設定，連鎖方程式による補完値
の更新と反復，から成る。補完モデルの設定に際して，
扱う変数が連続変数の場合，補完モデルとして線形回
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帰モデルが用いられることが多い。また補完モデルに
は，分析モデルに含まれない変数を含めてよいが，一
方で分析モデル内の変数は原則含めることが求められ
る。初期値に関しては，単一代入など，適当な方法で
得た初期値により欠測値を補完して疑似的な完全デー
タセットを作成する。
　補完ステップで最も肝要なのが，連鎖方程式による
補完値の更新である。例えば，y1, y2, ... y8 の 8種類の変
数それぞれに欠測を伴うデータを扱う場合を考える。
最初に，y1 内にある欠測値を，疑似的な完全データ
セット内の y2, y3, ... y8 を用いた y1 の補完モデルから生
成された補完値により補完し更新する。次に，y2 内に
ある欠測値を，疑似的な完全データセット内の y1, y3, 
... y8 を用いた y2 の補完モデルから生成された補完値に
より補完し更新する。y3 以降の変数についても同様の
作業を繰り返していく。より具体的な更新方法につい
ては上述のURLおよび Rubin （1987），野間（2017）も参
照されたい。
　初期値は通常ラフなものであり，T回の反復（Rの

mice関数では，maxitに対応）を経て単一の疑似的な完全
データセットを得る。そして，ここまでの一連の作業
をM回行いM個の完全データセットを得る。
　線形回帰モデルを用いた補完で，特に残差の非正規
性や変数間の非線形的な関係が疑われる場合には，予
測平均マッチング（predictive mean matching: PMM）が利
用されることも多い。これは，変数 yに欠測のある個
人 iについて，補完モデルを基に生成された予測値 yi*

と，yが観測されている個人について計算された予測
値 ŷとの距離が近い個人を複数人選択し，そこからラ
ンダムに選ばれた 1名の個人 ′i  の観測値 yi′ を用いて
個人 iの欠測値を補完する。このように補完値として
観測値を利用することで，元々のデータの分布を反映
した補完が実現できる。
　分析ステップでは，得られたM個の完全データセッ
トに対して，分析モデル（e.g.,確認的因子分析モデル）を
それぞれあてはめる。結果，分析モデル内の母数 θに
ついて，M種類の点推定値と標準誤差（または誤差共分

散行列）が得られる。
　最後が統合ステップであり，Rubin's ruleに基づいて
説明した。すなわち，点推定値（θ）として，各完全
データセットから得られた推定値（θm; m＝1, 2, ... M）
の平均を利用する。θ の誤差共分散行列 V（θ） につい
ては，各完全データセットから得られた θmの誤差共
分散行列の推定値 V（θm）に基づいて評価できる，補完
値内・補完値間の共分散行列を利用することで得られ

る（上述の URLおよび，高井他, 2016, pp. 117-118 も参照された

い）。特定の母数θに関する標準誤差の推定値 se（θ） は，
V（θ） の対応する対角要素の正の平方根に等しい。
チュートリアルでは特定の母数 θに関する帰無仮説検
定の方法や信頼区間の推定，およびそれらに付随する
自由度の推定量についても説明した。
　疑似的な完全データセット数M については，従来
M ＝5,10 程度で十分とされてきたが，近似推測法であ
るMIにおいては，十分な数のMが必要である（野間, 

2017, p.69）。比較的最近の研究の例としては，Graham 
et al. （2007） は M＝20 を推奨し，また Huque et al. 

（2018） のシミュレーションではM＝40 である。野間
（2017, p.69）では，M ＝100―1000 程度であっても現在
の計算機環境であれば必ずしも大きな負荷とならず，
そのため十分な数のMを設定することが望ましいと述
べている。一般に，特に欠測の割合が高いときには，
より大きなMが求められる。大まかな目安として，本
チュートリアルでは，少なくともM＝20，可能であれ
ばM＝50, 100 程度は確保する必要があることを述べた。
補助変数の活用
　FIMLやMIではMARに基づく欠測を仮定している。
これらの分析が正当化されるためには，欠測の生起
（r）を説明できる観測変数（yobs）が適切に分析モデル
内に投入される必要がある。一方で，欠測の生起（r）
および欠測値（ymis）を説明できる変数が実際にどの程
度観測でき，また分析モデルに反映されているのかに
関する度合いには幅がある。その意味で，MAR の仮定
が実際にどれだけ充たされているのかという問いは，
程度問題と言える（Graham, 2009; Newsom, 2015）。
　特に欠測の割合が大きいとき，分析モデルには元々
含まれていないが，rや ymisと相関があると考えられる
観測変数を収集しモデルに投入することで，MAR の蓋
然性を高められる可能性がある。このような観測変数
は補助変数（auxiliary variable）と呼ばれ，仮にそれが欠
測の直接的な原因となっていなくとも，投入により推
定値のバイアスが低減し標準誤差も小さくなることが
期待される。
　MIでは分析モデルと補完モデルが明確に区別されて
いるため，収集した補助変数を補完モデルに含めて分
析を実行すればよい。SEM のFIML において補助変数
を考慮した分析アプローチは幾つか知られているが

（e.g., Enders, 2025, pp. 325-326; Newsom, 2015, pp. 18-25），飽
和した相関アプローチ（saturated correlated approach）は簡
便であり，Mplus や R の semTools パッケージで実装
できる。この方法では，モデル内に元々投入されてい
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る変数（の残差）と補助変数間の相関を仮定したモデル
を新たに設定することで，当初の分析モデルの構造に
影響を与えずに補助変数を考慮する。ただし，経験的
に，rや ymisとの相関がかなり高い補助変数が投入され
ない限り，分析結果に与える変化は小さいことが多い
ことには留意する必要がある。
まとめと MNAR の場合
　特に SEMの下位モデルを扱う場合のように，直接
尤度の設定・評価が容易に実行できる状況では，FIML
を利用すればよい。モデルが正しく設定されていれば
有効性（標準誤差）の観点からも優れている。特に欠測
の割合が大きいとき，分析モデルに含まれないが，欠
測を説明するのに有用な補助変数があれば，それを含
めた分析（e.g., 飽和した相関アプローチ）も有用である。一
方，補完モデルと分析モデルを明確に区別したMI，特
にMICEは汎用性の高い方法であり，様々な分析モデ
ルに対して柔軟に適用可能であり，ソフトウェア上の
実装も容易である。
　モデルが正しく設定されていれば，FIMLとMIが互
いにかなり類似した結果を示すことは経験的にもよく
知られている（本チュートリアルの分析例，および Graham, 

2009; Lee & Shi, 2021）。一方で，実際にはモデルの誤設定
を避けることは非常に困難であり，このとき FIMLと
MIの間で推定結果に大きな乖離が生じる可能性もある

（e.g., Lee & Shi, 2021）。このような点を含めたFIMLとMI
の比較と選択については，現在でも研究・議論の余地
がある。
　欠測データの分析に際しては，欠測データメカニズ
ムや各分析法に内在する仮定を吟味しながら適切な分
析方法を選択していくことが求められる。分析結果の
報告に際して，欠測の割合やその処理方法が明記され
ていないケースは多い。例えば，経営学や心理学領域
での文献調査を行った Zyphur et al. （2023） では，処理
方法について説明があった論文は全体の 34％であった
ことを報告している。また，分析上の工夫だけではな
く，様々なデータ収集上の工夫も重要である。
　MAR（およびMCAR）に基づく欠測とは考えられず，
また有力な補助変数の情報が十分得られない（または，

提供されている多重代入データを使う場合に補助変数の情報が十

分反映されていない）場合，すなわちMNAR に基づく欠
測である場合は，FIML やMI による推測結果には大
きなバイアスを伴う可能性がある。
　MNARにおいては，欠測指標 rについてのモデリン
グが必要である。MNARの場合の分析法として，選択
モデル，混合モデルなどがある（Enders, 2022; Newsom, 

2015; 高井他, 2016）。
　ただし現状において，絶対的に優れた方法があると
は言えず，そのためMNARに基づく欠測が想定される
場合には，感度分析の実行が重要とされている。すな
わち，異なる方法に基づく推定結果の間に大きな乖離
が見られないのであれば，方法の選択如何が最終的な結
論に与える影響は小さいものと結論づけられる。一方，
もし推定結果に大きな乖離が見られるのであれば，実質
科学的な見地や先行研究等の外的な情報も踏まえなが
ら，判断され得る結論の範囲を示すことが求められる。

統計ソフトウェア R での分析例
鈴木雅之

　本稿では，心理尺度を用いて調査を行った研究を想
定し，項目得点に欠測が生じている状況において，確
認的因子分析，尺度得点の算出，回帰分析を統計ソフ
トウェア Rで行う方法について紹介する1。FIML法に
よる分析を行うためのパッケージとしては lavaanや
sem，MI法による分析を行うためのパッケージとして
はmiceや Ameliaなど様々なものがあるが，本稿では
FIML法とMI法を同一の枠組みで行うことを目的に，
lavaan （Rosseel, 2012） と mice （van Buuren & Groothuis-

Oudshoorn, 2011），semToolsパッケージ（Jorgensen et al., 

2022）を用いて分析する方法を紹介する2。semTools
パッケージには，lavaanパッケージの関数 cfa（） や
sem（） と同様の方法で，miceパッケージや Amelia
パッケージで補完を行ったデータに対して分析・統合
をするための関数がある3。

1  データファイルおよび Rのスクリプトは電子付録で公開して
いる。

2  miceパッケージの使い方の詳細は高橋・渡辺（2017），lavaan
と semToolsパッケージについて豊田（2014）などを参照され
たい。

3  厳密には，補完・分析・統合を一括で行うための関数もある
が，本稿では紹介しない。

Figure 1
「example.csv」（一部抜粋）
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　中学生 300 名を対象に，内発的動機づけと外発的動
機づけに関する質問紙調査（5 件法），および学力テスト
（100 点満点）を実施したとする。調査とテストの結果が
「example.csv」として保存されている（欠測を生じさせる

前の完全データは「complete.csv」として保存されている）。こ
のファイルを Excelで開いたものを Figure 1，データ
の欠測状況を Table 2 に示す。schoolは生徒が所属す
る学校の種別（1＝公立，2＝国立，3＝私立），genderは性
別（0＝男性，1＝女性），y1―y4 は内発的動機づけを測定
するための項目の得点，y5―y8 は外発的動機づけを測
定するための項目の得点，scoreはテスト得点であり，
「.」は欠測をあらわす。
　この CSVファイルを，関数 read.csv（） を用いて，
dat_misというオブジェクトに保存する。その際，引
数 na.strings＝″.″で，ピリオド （.） が欠測値であるこ
とを指定する。

# データの読み込み
dat_mis <- read.csv(″example.csv″, na.strings = ″.″)

　次に，本稿で紹介する分析を行うために必要なパッ
ケージを，関数 library（） を用いて読み込む。

# パッケージの読み込み
library(mice)
library(lavaan)
library(semTools）
library(mitml)

多重代入法による補完
　miceパッケージの関数mice（） を用いて補完を行っ
た結果を，dat_MIというオブジェクトに保存する。

# 関数mice による補完
dat_MI <- mice(data = dat_mis, method = ″pmm″, 
m = 100, maxit = 30, seed = 23109, printFlag = 
FALSE)

　引数 dataでデータの指定，引数methodで代入法の

指定を行う。ここでは，予測平均マッチング（pmm）を
指定している。引数methodでは，変数ごとに代入法
の指定をすることも可能であり，他にも線形回帰

（norm）や，ロジスティック回帰（logreg）などを指定す
ることができる。引数mでは作成する疑似完全データ
の数，引数maxitでは反復回数を指定する。ここでは，
疑似完全データの数を 100（デフォルトでは 5），反復回数
を 30 回としている（デフォルトでは 5）。引数 seedでは，
再現性を確保するための任意のシード値を設定する。
最後に，引数 printFlag＝FALSEでは，コンソール画面
に反復情報を出力しないように設定している。
　疑似完全データの確認をしたい場合には，関数
complete（）を利用する。たとえば，1 つ目の疑似完全
データを確認するためには，complete（dat_MI, 1），3
つめの疑似完全データの最初の 8行を確認するために
は，head（complete（dat_MI, 3）, 8） とする。
確認的因子分析
　FIML法による確認的因子分析を lavaanパッケージ
の関数 cfa（），MI法による確認的因子分析を semTools
パッケージの関数 cfa.mi（） を用いて行う。いずれの場
合も，まずはモデルの記述を行う。ここでは，内発的
動機づけに関する 4 つの変数（y1―y4）が因子「F1」，
外発的動機づけに関する 4 つの変数（y5―y8）が因子
「F2」から影響を受けることを仮定したモデルを記述
し，CFA_modelというオブジェクトに保存する。

# モデルの記述（確認的因子分析）
CFA_model <- ’
F1 =~ y1 + y2 + y3 + y4
F2 =~ y5 + y6 + y7 + y8
’

　モデルを記述する部分は，クォーテーション（’）で
囲む。lavaanパッケージでは，各変数がどの因子から
影響を受けているかを「=~」を用いて表現する。具体
的には，「=~」の左側に因子名，右側にその因子から影
響を受ける観測変数の名前を記述する。
　モデルを記述したら母数の推定を行う。まず，FIML
法による確認的因子分析について，関数 cfa（） による

Table 2
各変数の欠測状況

school gender y1 y2 y3 y4 y5 y6 y7 y8 score

欠測数（人数） 0 0 4 5 4 9 4 17 17 24 14
欠測割合（％） 0 0 1.3 1.7 1.3 3.0 1.3 5.7 5.7 8.0 4.7
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推定結果を CFA_FIMLというオブジェクトに保存し，
関数 summary（） で結果を出力する。

# FIML法による母数の推定（確認的因子分析）
CFA_FIML <- cfa(CFA_model, data = dat_mis, 
missing = ″fiml″, std.lv = TRUE)
# 結果の出力
summary(CFA_FIML, fit.measures = TRUE, 
standardized = TRUE, ci = TRUE)

　最初の引数で，記述したモデルを代入したオブジェ
クト（CFA_model）を指定し，引数 dataでデータを指定
する。また，missing = ″fiml″では，FIML法による分
析をすることを指定している。最後に，引数 std.lv = 
TRUEでは，因子の分散を 1 に固定して分析をするこ
とを指定している。デフォルトでは，各因子を構成す
る観測変数のうち，最初に記述された観測変数の因子
負荷が 1 に固定されて推定が行われる4。
　次に関数 summary（）では，最初の引数で，分析結果
を代入したオブジェクト（CFA_FIML）を指定し，引数
fit.measures = TRUEで適合度指標，引数 standardized = 
TRUE で標準化解，引数 ci = TRUEで 95％信頼区間の
出力を指定している。
　補助変数を含める場合には，semToolsパッケージの
関数 cfa.auxiliary（）を用いる。関数の使い方は関数
cfa（）と同様であり，引数 auxで補助変数を指定する。
たとえば，性別とテスト得点を補助変数とする場合に
は，引数に aux = c（″gender″, ″score″）を加える。
　次に，MI法による確認的因子分析について，

semToolsパッケージの関数 cfa.mi（） は，関数 cfa（） と
ほとんど同一の方法で使うことができる。関数 cfa（）  
との違いは，補完後のデータを指定すること，引数の
missing = ″fiml″が不要であること，関数 summaryで
結果を統合・出力する際に，引数 output = ″data.frame″
を加えること，である。

# MI法による母数の推定（確認的因子分析）
CFA_MI <- cfa.mi(CFA_model, data = dat_MI, 
std.lv = TRUE)
# 結果の統合・出力
summary(CFA_MI, fit.measures = TRUE, 
standardized = TRUE, ci = TRUE, output = ″data.
frame″)

　以上の方法で分析した結果と，リストワイズ削除に
より分析を行った結果，欠測のない完全データで分析
を行った結果を Table 3 に示す。リストワイズ削除で
は，他と比べて推定値に乖離（過小推定）が生じている
とともに，標準誤差も完全データの場合と比べて大き
くなっていることが確認できる。
重回帰分析
　FIML法による重回帰分析を lavaanパッケージの関
数 sem（），MI法による重回帰分析を semToolsパッ
ケージの関数 sem.mi（）を用いて行う。分析に先立ち，
関数 rowMeans（） を用いて尺度得点（1 項目あたりの平均

値）を算出する。y1―y4 の平均値を内発的動機づけ得
点として Intという変数名，y5―y8 の平均値を外発的
動機づけ得点として Extという変数名で保存する。

4  因子負荷の非標準化推定値を比較するため，ここでは因子の
分散を 1 に固定して推定を行っている。

Table 3
確認的因子分析の推定結果のまとめ（因子負荷と標準誤差）

完全データ FIML FIML
（補助変数あり） MI リストワイズ削除

推定値 標準誤差 推定値 標準誤差 推定値 標準誤差 推定値 標準誤差 推定値 標準誤差
F1 → y1 0.612 0.082 0.634 0.094 0.627 0.094 0.629 0.084 0.462 0.102
F1 → y2 0.755 0.073 0.744 0.079 0.746 0.079 0.746 0.075 0.736 0.100
F1 → y3 0.532 0.077 0.560 0.087 0.557 0.087 0.553 0.079 0.471 0.098
F1 → y4 0.581 0.074 0.562 0.078 0.565 0.078 0.564 0.076 0.543 0.097
F2 → y5 0.958 0.071 0.958 0.072 0.959 0.072 0.959 0.073 0.917 0.089
F2 → y6 1.222 0.067 1.214 0.069 1.213 0.068 1.210 0.069 1.155 0.083
F2 → y7 0.825 0.061 0.846 0.063 0.848 0.064 0.839 0.063 0.863 0.075
F2 → y8 0.703 0.077 0.694 0.082 0.699 0.082 0.694 0.079 0.669 0.094
F1 ⇔ F2 0.403 0.067 0.393 0.070 0.395 0.070 0.399 0.069 0.398 0.087

注）　推定値は非標準化推定値である。
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# 尺度得点の作成
dat_mis$Int <- rowMeans(dat_mis[c(3:6)])
dat_mis$Ext <- rowMeans(dat_mis[c(7:10)])

　関数 mice（） で作成した疑似完全データについて尺
度得点を算出するためには，まず，mitmlパッケージ
（Grund et al., 2023）の関数 mids2mitml.list（） により，
miceパッケージで作成されたオブジェクトをコンバー
トする。次に，疑似完全データの数だけ計算を繰り返
すため，for文による繰り返し処理を利用する。

# 尺度得点の作成（疑似完全データ）
dat_MI_list <- mids2mitml.list(dat_MI)
for(i in 1:100){
dat_MI_list[[i]]$Int <- rowMeans(dat_MI_list 
[[i]][c(3:6)])
dat_MI_list[[i]]$Ext <- rowMeans(dat_MI_list 
[[i]][c(7:10)])
}

　重回帰分析も確認的因子分析と同様，まずモデルを
記述する。内発的動機づけ（Int）と外発的動機づけ

（Ext）を独立変数，テスト得点（score）を従属変数とす
る重回帰分析のモデルを記述し，reg_modelというオ
ブジェクトに保存する。

# モデルの記述（重回帰分析）
reg_model <- ’
score ~ Int + Ext
Int ~~ Int
Ext ~~ Ext
Int ~~ Ext
’

　「~」の左側に従属変数，右側に独立変数の名前を記
述する。また，「~~」は共分散をあらわし，「Int ~~ Int」

は内発的動機づけの分散，「Int ~~ Ext」は内発的動機
づけと外発的動機づけの共分散をあらわす。lavaan
パッケージでは，独立変数の分散・共分散の推定を指
定しないと，独立変数に欠測のあるケースは除外され
る。
　FIML法による重回帰分析について，関数 sem（）に
よる推定結果を reg_FIMLというオブジェクトに保存
し，関数 summary（）で結果を出力する。関数の使い
方は確認的因子分析の時と同様であり，ここでは標準
化解と決定係数，95％信頼区間を出力する。

# FIML法による母数の推定（重回帰分析）
reg_FIML <- sem(reg_model, data = dat_mis, 
missing = ″fiml″) 
# 結果の出力
summar y(reg_FIML, standardized = TRUE, 
rsquare = TRUE, ci = TRUE)

　MI法による重回帰分析は，semToolsパッケージの
関数 sem.mi（）を用いる。

# MI法による母数の推定（重回帰分析）
reg_MI <- sem.mi(reg_model, data = dat_MI_list)
# 結果の統合・出力
summary(reg_MI, standardized = TRUE, rsquare = 
TRUE, ci = TRUE, output = ″data.frame″)

　以上の方法で分析した結果と，リストワイズ削除に
より分析を行った結果，欠測のない完全データで分析
を行った結果を Table 4 に示す。リストワイズ削除で
は，完全データの場合と比較して，推定値に乖離が生
じているとともに，標準誤差も大きくなっていること
が確認できる。また，FIML法についても，推定値の
乖離と標準誤差の増大がみられる。これは，項目得点
に 1つでも欠測があると尺度得点が欠測していること
になり，内発的動機づけ得点と外発的動機づけ得点の

Table 4
重回帰分析の推定結果のまとめ（偏回帰係数と標準誤差）

完全データ FIML MI リストワイズ削除
推定値 標準誤差 推定値 標準誤差 推定値 標準誤差 推定値 標準誤差

内発的動機づけ 3.521 0.622  3.378 0.665 3.384 0.633  3.379 0.762
外発的動機づけ 0.131 0.474 -0.260 0.567 0.009 0.483 -0.495 0.562
R2 .105 .091 .095 .086

注）　推定値は非標準化推定値である。
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欠測割合が大きくなるためである（内発的動機づけ得点の

欠測の割合は 7.3％，外発的動機づけ得点の欠測の割合は

18.3％）。換言すると，1 つの下位尺度を構成する 4項
目のうち 1項目だけ欠測している場合，残りの 3項目
に関する情報が活用されないために，推定の精度は低
下してしまう。同様に，尺度得点を算出し，尺度得点
だけを用いてMI法を利用した場合も，推定の精度は
低下する。そのため，項目レベルで欠測が生じている
場合には，尺度得点を算出してから補完を行うのでは
なく，本稿で紹介したように，項目レベルで補完を行
い，その後に尺度得点を算出する方法が有用といえる。
ただし，項目数が非常に多い場合には結果が収束しな
かったり，そもそも補完ができなかったりすることが
ある。こうした問題への対処については，Enders 

（2010） で詳しく議論されている。
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