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    近年，教育測定・心理計量の領域で話題になっている統計手法の一つにニューラルテス

ト理論（Neural Test Theory : NTT）がある．NTTでは，受験者を離散的な潜在ランクに

割り当てる点が一つの大きな特徴である．NTT は現段階では，潜在ランクおよび項目参照

プロファイルの推定精度，項目サンプリングを超えた潜在ランクの推定値の一貫性，異な

る最適化基準に基づく推定値の比較，分析モデルの構築・改良などの方法論的課題を中心

に検討すべき課題があった．本論文ではまず，項目サンプリングを超えた潜在ランクの推

定値の一貫性について，順序データ用の多値型NTTを用いた方法と，項目和得点を基準に

潜在ランクの度数分布が一様になるように分割した方法との比較をシミュレーションにて

検討した．そして，実際の小論文データへの多値型 NTTの適用例を示し，また項目和得点

や項目反応理論に基づく分析結果との簡単な比較検討を行った． 
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Neural test theory (NTT) is a data analysis method that has gradually become popular 

in educational measurement and psychometrics. In NTT, examinees are clustered to a 

discrete latent rank. The author noted several technical issues for future researches of 

NTT, such as accuracy of estimates for latent ranks and ICRP, consistency of estimates 

for latent ranks over item sampling, comparison among several optimizing criteria, and 

construction and improvement of algorithm for NTT models. In the present research, 

the author performed a simulation study by using polytomous NTT for ordered data, to 

compare consistency of estimates for latent ranks over between NTT and another 

method using total test score. Finally, a real data example for essay test data was shown 

by using polytomous NTT, and the author compared these results with methods based 

on item response theory and total test score. 

Keywords : neural test theory, ordered data, essay test, educational measurement 



1 1 1 1 問題と目的問題と目的問題と目的問題と目的    

    

1.11.11.11.1はじめにはじめにはじめにはじめに    

 ニューラルテスト理論（Neural Test Theory : NTT）

は，自己組織化マップ（Self-organizing Map : SOM, 

Kohonen, 1995）のメカニズムを利用した，テストデ

ータを分析する為の潜在ランク理論であり，荘島

(2007)によって提案された．NTTモデルにおいては，

各項目の各カテゴリに対する選択確率を表す項目参照

プロファイル（Item Category Reference Profiles : 

ICRP) が潜在ランクごとに推定され，同時に受験者は

離散的な潜在ランク上に配置される(e.g., Shojima, 

2008)． 

この手法を用いる根拠として，荘島(2007)や

Shojima(2008)では，受験者を連続尺度上に正確に配

置できるほど一般にテストの信頼性は高くないという

方法論的な観点からの理由を挙げている．また，

Shojima(2008)では心理学や教育学，社会学や行動科

学においては，学力や性格特性，態度などの潜在特性

を測定する場合が多く，それらの信頼性を考慮すると，

潜在変数に対して潜在ランクを念頭に置いた分析手法

が望ましいと述べている． 

NTTは当初，ICRPや潜在ランクの推定のための最

適化基準として，最小二乗基準を用いた方法が提案さ

れていたが（荘島, 2007），Shojima(2007b, 2007c, 

2008)では最尤基準とベイズ基準を用いた推定方法が

示されている．最尤基準の利用により，NTTモデルは

潜在ランクの事後分布であるランク・メンバーシッ

プ・プロファイル(RMP)を受験者ごとに推定すること

ができ，受験者がどの潜在ランクに所属するかを確率

的に評価できるのが利点である．また，最尤基準を導

入したことによりNTTモデルの適合度を多角的な指

標を用いて検討することができ，これは潜在ランク数

を決定する上でも有用である．このように，NTTは推

定法の議論を中心に徐々に理論的な発展を遂げ，実用

的にも注目されつつある手法と言えよう． 

    

1.21.21.21.2 NTT NTT NTT NTTの方法論的課題の方法論的課題の方法論的課題の方法論的課題    

    NTTは既に一部で実用化がなされているが，NTT

に関する研究自体の歴史はまだ極めて浅い．これまで

の議論も推定法に関する議論が主体であり，その理論

や実践において生じうる様々な課題については，今後

多くの研究者や実務家を交えたより広汎な議論が待た

れるところである．NTTにおいて今後検討すべき課題

としては，例えば潜在ランクおよび ICRPの推定精度

の検証，項目サンプリングを超えた潜在ランクの推定

値の一貫性の検証，異なる最適化基準から得られる推

定値の比較，分析モデルの構築・改良などに関する方

法論的課題がまず挙げられる． 

 NTTのアルゴリズムは自己組織化マップの手法を

援用しており，ICRPの要素について適当な初期値を

設定した上で，ある最適化基準のもとに反復的に要素

の更新を行い，任意の反復回数に達した場合か一定の

収束基準に達したと判断された場合に計算を終了する．

このような反復的なアルゴリズムを用いた中で，推定

される潜在ランクや ICRPが，データの性質に応じて

どの程度の推定精度を有しているかという問題がある．

この点については，NTTモデルから発生されたシミュ

レーションにより検討することが可能ではあるが，潜

在ランクの数や度数分布，反応カテゴリ数や ICRPの

要素をいかに設定するかという問題があり，シミュレ

ーションの実行そのものの難しさがある． 

また，推定精度の問題だけでなく，潜在ランクの推

定値が項目サンプリングを超えてどの程度一貫してい

るのか，という問題もある．すなわち，同じ項目領域

からサンプリングされたデータから推定される潜在ラ

ンクが，データの性質に応じてどの程度一貫している

かという問題である．この点の検証についても，上と

同様の問題が生じうるが，例えば項目反応データを用

いたシミュレーションによる間接的な検討を行うこと

は比較的容易である． 

他にも，上記２つの問題において，最適化基準の違

いと推定精度や一貫性の関連も重要な問題である．さ

らに，そもそもNTTを用いずに，項目和得点や項目

反応理論を用いて得られたθを任意のパーセンタイル

を基準に分割してランクを形成する簡便法では対処で

きないかという疑問も生じうるが，この点も応用上検

討すべき重要な課題であると言えよう． 

分析モデルについても，これまで二値型データ・多

値データを扱う為のモデルが検討されており（荘島, 

2007 ; Shojima, 2007a），プログラムも一部公開され

ているが，利用が手軽で，データ数や潜在ランク数・

カテゴリ数・最適化基準・初期値などの設定も柔軟に

対応できるプログラムが必要であり，既存の分析アル

ゴリズムについても若干の改良の余地がある． 

他にも，NTTにおいては学習させるデータの順番が

ランダムに設定されていることから，同じデータを用

いたときの潜在ランクの推定値の一貫性の問題や（橋



  

本・荘島, 2008），また等化法に関する議論（荒井・橋

本・荘島, 2008）も，上述の議論と平行して検討すべ

き方法論的課題と言えるだろう． 

    

1111.3.3.3.3本論文本論文本論文本論文の目的の目的の目的の目的    

前小節を踏まえ，本論文では，項目サンプリングを

超えた潜在ランクの推定値の一貫性の検証を，多値型

のNTTモデルを用いて行うことを一つ目の目的とす

る．具体的には，まず既存の順序データ用の多値型

NTTモデルを，より汎用的に利用できるように若干の

改良を加える．そして，項目反応モデルから発生させ

た多値型データをもとに，データに影響を与えるノイ

ズの大きさや項目数・被験者数・母集団の分散・項目

識別力などを変化させた上で，潜在ランクの推定値の

一致率の比較を行う．比較は，NTTモデルにおける最

小二乗基準・最尤基準・ベイズ基準の三つの最適化基

準と，項目和得点の度数分布が一様になるように均等

に割り当てた均等分割基準で行う．また，項目反応理

論を用いて得られたθに対して均等分割する基準との

比較も興味深いが，今回のシミュレーションでは項目

反応モデルから発生させたデータを用いる為にθに対

する均等分割に対して有利なシミュレーションになる

恐れがあること，また項目反応理論を用いた推定には

項目反応モデルや推定法の設定によっていくらかの任

意性が残ることから，この方法に対しては別途適切な

シミュレーションのもとで行うのが妥当であると判断

し，今回のシミュレーションでは直接比較を行わない

ことにした． 

次に，実際の小論文データに対して多値型NTTの

適用例を示すことを二つ目の目的とする．具体的には

まだ応用事例の少ない多値型NTTにおいて，分析結

果の解釈の具体例を示し，またNTTと項目和得点や

θの均等分割基準に基づく分析結果の比較検討を行い，

NTTを用いた推定値の特徴を明らかにしたい．  

  

2222推定法推定法推定法推定法    

    

本節では，順序データ用のNTTの推定アルゴリズ

ムについて述べる．Shojima(2007a)では，順序データ

用のアルゴリズムが既に構築されているが，本論文に

おいてはそのより汎用的な利用を目的として，若干の

改良を行っている．本節ではアルゴリズムを先に紹介

し，具体的な改良点については後で説明することとす

る．また，二値型のアルゴリズムや，最尤基準を用い

た場合の適合度指標に関する議論はShojima(2008)を

参照のこと． 

まず以下に，後の議論に登場する各記号の意味をここ

で前もって記しておく． 

 

Q  ：潜在ランク数    �  ：受験者数 

n   ：項目数       K   ：カテゴリ数 

D  ：サイズ� ×n の順序データ行列  

VVVV  ：サイズ（K ×n )×Qの参照行列 

U  ：サイズ� ×(K ×n )の，反応したカテゴリ

を示すダミー変数からなる行列 

Z  ：サイズ� ×(K ×n )の，U に対応する要素

の欠損の有無を示す行列 

T   ：学習回数 

 

本論文では，議論を単純化する為，カテゴリ数は全

ての項目において等しくK とする．まず最初に，その

要素に１からK の値が含まれている多値の順序デー

タ行列Dをもとに，列の要素の数をK 倍したサイズ

� ×(K ×n )の行列U を，全ての )(1 �ii LL　 ，

)(1 njj LL　 ， )(1 Kkk LL　 において 

 

(1) 
 
 

の規則に基づいて生成する．この操作によりU の形は

具体的には以下のようになる． 
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この操作によって，列数がK 倍になった行列U に

対して，二値データの場合のアルゴリズムを応用する

ことができる．以下，U を用いた推定アルゴリズムに

ついて説明する． 

 

STEPSTEPSTEPSTEP    1111.1.1.1.1    VVVV の初期値を定める． 

 全ての qk, に対して，VVVV のq 番目の潜在ランクにお 

けるカテゴリk に対応するべクトル                        

 

の要素を，項目 j に依存しない形で以下の 

ように定める． 

                                                                           

 

(3)         

ここで0 <           < 1である．(3)式では全ての項

目に対して，番号の小さい潜在ランク(e.g., q = 1)ほど，

番号の小さいカテゴリ(e.g., k = 1)に高い確率で，また

番号の大きいカテゴリ(e.g., k =K )には低い確率で反

応し，そして潜在ランクの値が大きいほど(e.g., q = 

Q )その逆になるように設定されている．より具体的

には，隣接する潜在ランクの要素の差が Q/ 21 となり，

さらに 1=k かつ 1=q ，および Kk = かつ Qq = の

ときに要素が QQ 2/)12( − に，また 1=k かつ

Qq = ，および Kk = かつ 1=q のときに要素が

Q2/1 となるように設定したときに，

Qq 2/)12(1 −− と Qq 2/)12( − はそれぞれk = 

1とk =K における一般項となる．そして残りのカテ

ゴリに対する要素については，k の値を基準に，先ほ

どの一般項にそれぞれ 1)()( -K/k-K と

1)()(-1 -K/k-K を重みづけしている． 

    

STEPSTEPSTEPSTEP    1111.2.2.2.2    潜在ランクの事前分布の設定    

STEP3以降でベイズ基準を利用する場合に必要な

設定であり，具体的には事前確率 

)( 1 Qq ππππ LL= を定める．Shojima(2008)でも

指摘されているように，SOMの性質上，最小二乗基

準や最尤基準を用いた場合に，両端の潜在ランク(q = 

1,Q )の度数に偏りが生じることから，事前確率の設定

はその影響を緩和する効果がある．本論文では以下の

ように，事前確率を設定する． 
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L が大きいほど，両端の潜在ランクの事前確率が小

さくなり，L ＝１の場合に最尤基準と同値になる．本

論文では =L 1.5とする．これは，離散一様分布で求

められる確率に比べ 3/2)(1 =/L 倍の大きさを設定す

ることを意味する． 

    

STEPSTEPSTEPSTEP    2222    UUUU の行要素をランダムにソートする． 

これは，STEP3以降の学習において各行（受験者）

で行われる学習の順番を公平にする為である． 

    

STEPSTEPSTEPSTEP    3.13.13.13.1    あるi (1…i …� )に対して，最適化基準で

ある距離関数d が最も小さくなるランク

)(1 Qww LL を選ぶ． 

d については，最小二乗基準(LS)・最尤基準(ML)・

ベイズ基準(MAP)があり，それぞれ 

以下で示される最適化基準を最小にするwが選ばれ

る． 

                    

(5)     

 
                                                                  

(6) 
 
                                                                        

(7) 

                                                                      

(8) 

 

•はアダマール積を意味する． iZ , iu はそれぞれZ

とU の中で受験者i のデータに対応するサイズ(K ×

n )×1のベクトルであり， qv はq 番目の潜在ランク

に対応する要素を含むサイズ(K ×n )×1のベクトル

である．(6)と(7)式に関しては， iju の中に被験者i の

選択したデータが含まれているので，

)-)log(1-(1 jqij vu の項を設ける必要がないという
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点には注意が必要である．  

 

STEPSTEPSTEPSTEP    3.23.23.23.2    VVVV の要素を更新する． 

更新の仕方は必ずしも一義的でないが，本論文では

以下のようにする．    

)( qiiqwqq h vuZvv −•+=       (9) 

                                                                                                                                                        

(10) 

    

    

                                                                                                                                                                        (11) 

 
 

(12) 

        

TT σσαα ,,, 11 は超母数であり，本論文では

Shojima(2008)に倣って，（ TT σσαα ,,, 11 ) = (1.00, 

0.10, 1.00, 0.12)とそれぞれ設定した． 

    

STEPSTEPSTEPSTEP    3.33.33.33.3    VVVV の要素の調整（１）    

VVVV の要素について，すべての qk, に対して 

kq

K

k
kqkq vV v 1

1

* )
~

( −

=
∑=        (13) 

と変換することで，全ての項目における各カテゴリへ

の反応確率の和が１になるように調整する．ただし，       

は j 番目の対角要素に   の j 番目の要素が入っ

たサイズn ×n の対角行列である． 

 

STEP STEP STEP STEP 3.43.43.43.4    VVVV の要素の調整（２） 

両端のカテゴリ（k ＝1,K )に対応する ****VVVV の要素

),( **
1 Kqq vv を更新し，１番目のカテゴリに対して単調

減少制約を，K 番目のカテゴリに対しては単調増加制

約を施す．具体的にはあるq )(2 QqLL に対して，

その要素が以下のように定義されるベクトル

),,( 1 KnqKjqqKKq ccc LL=c と

),,( 11111 nqjqqq ccc LL=c を計算し， 

    

    

                                                                                                                                                    

(14) 

                                                                            (15) 
    

そしてこの Kqc ならびに q1c を用いて， ** vv qKq 1, をそ

れぞれ以下のように更新する．    

    

                                                                                        (16) 

    

                                                                                                                                                                                                                                                                                            

(17) 

 

    

STEP STEP STEP STEP 3.5 3.5 3.5 3.5 VVVV の要素の調整（3） 

                                               

と更新する．    

    

STEPSTEPSTEPSTEP    4444    STEP 3を全てのi に対して繰り返す．    

    

STEPSTEPSTEPSTEP    5555    STEP 2,3,4をT 回繰り返す．    

 

アルゴリズムのアルゴリズムのアルゴリズムのアルゴリズムの改良点につ改良点につ改良点につ改良点についていていていて    

順序データの為のNTTはShojima(2007a)ですでに

アルゴリズムの検討がなされていたが，より汎用的に

使用する為に今回若干の改良を行った．改良を行った

点は主に三点である．一点目は(3)式で表された，VVVV の

初期値の設定である．適切な初期値を与えない場合に，

不適解やVVVV の非順序性及びその解釈についての問題

を引き起こす可能性があるが，(3)式は潜在ランクに応

じた初期値をカテゴリと潜在ランクの関数で表してお

り，一般的な表現を試みている．二点目は(4)式による

潜在ランクの事前分布の設定である．Shojima(2008)

では事前確率は任意の定数で定められており，潜在ラ

ンク数の関数で表現されていなかった．その点，今回

のアルゴリズムでは潜在ランク数に応じた事前分布が

設定され，後のシミュレーションも実行しやすいとい

うメリットがある．三点目は，(14)～(17)式に表され

ている，要素の単調増加及び単調減少の順序制約であ

る．これは，VVVV の要素および潜在ランクの推定値の解

釈を容易にし，また ICRPの推定値を安定させる上で

も有用である． 

他にも， Shojima(2007a)ではカテゴリK に対応す
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る要素がU に含まれていないが，今回のアルゴリズム

には(2)式にあるように含まれている．その結果，(13)

式のような調整を行わなくてはならない反面，これに

より各項目に対応するVVVV の要素の和について直接制

約をかけることができるので，不適解の発生を抑える

ことが期待される． 

 

3333シミュレーシミュレーシミュレーシミュレーションションションション    

    

3.13.13.13.1方法方法方法方法    

本シミュレーションでは，項目反応モデルに基づい

て発生させたデータをもとに，項目サンプリングを超

えた潜在ランクの推定値の一貫性を，NTT（最適化基

準は最小二乗基準と最尤基準とベイズ基準の三種類）

と潜在ランクの度数分布が離散一様分布になるように

分割した均等分割基準の間で比較検討する．シミュレ

ーションは，被験者数(� = 100,400,1600)，項目数

(n = 10,20,40)，被験者パラメタの母集団分散（ 2σ = 

1,2)，潜在ランク数（Q = 5,10,15)，データに与えるノ

イズの大きさ（
2
eσ = 0,1,2)，識別力パラメタの高さ

（高・低・混合条件），カテゴリ数（K = 2,5）をそれ

ぞれ変化させた上で検討した．なお，学習回数T につ

いてはT =150と固定した．シミュレーションは以下

の手順によって行った． 

 

STEP1STEP1STEP1STEP1 被験者パラメタ・項目パラメタを以下の分布

からそれぞれ抽出する． 

 

・� 個の被験者パラメタ…………… iθ ～ ),0( 2σ�  

・n 個の識別力パラメタ  

高条件… )25.0,20.0(~log 　�jα   

 低条件… )25.0,70.0(~log 　−�jα  

 混合条件… n /2個が )25.0,20.0(~log 　�jα で，                        

残りのn /2個は )25.0,70.0(~log 　−�jα  

・n 個の困難度パラメタ…………… )1,0(~ 　�jδ  

・(K -1)×n 個の閾値パラメタ……  

 

 

 

                                                                            (18) 

STEP2STEP2STEP2STEP2 STEP1で発生させた被験者パラメタと項目

パラメタを用いて，各被験者i が項目 j にお

いてカテゴリk を選択する確率 )( ijkP θ を，

以下の式で示される，Muraki(1992)の

GPCMを用いて計算する．    

∑ ∑

∑
−

= =

=

+−

+−

=
1

0 0
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])((exp[

])((exp[

)(
K

l m

m

l

jmjij

jmjij

ijk

l

k

P

τδθα

τδθα

θ

k

(19) 

STEPSTEPSTEPSTEP3 3 3 3 サイズ n� × の標準一様乱数行列R を発生

させ，以下の規則に基づいて生データ行列D

を生成し，前節の方法により各被験者の潜在

ランクを推定する． 

 

 

                                                                             

 

 

 

 

(20) 

 

STEP4STEP4STEP4STEP4  STEP1～3をS 回繰り返す．ただし各回で

θはSTEP１で得た値に対して， ) (0, 2
eσ�

から独立に抽出した� 個の乱数を足した値

を新たなθとして用いる．すなわち，
2
eσ =0

の条件では各回で固定されたθを用いる． 

 

均等分割基準の場合はDを利用して各々の被験者 

の項目和得点を求め，各潜在ランクの度数が等しくな

るように潜在ランクを決定する．各々の )( Ss ≤ 回目

の結果を用いて，潜在ランクの完全一致率，±１のズ

レを許容した一致率の平均値と標準偏差をそれぞれ求

める．具体的には， 2/)1(2 −= SSCS 回分の組み合

わせがあるので，それらの値を利用して一致率の平均

値と標準偏差を計算することになる．今回はS = 10と

設定した． 

    

    

　　　　　

　　　
　　　

　　　　

　　　
　　　　














≥
>≥+

+>≥++
++>

≥+++
+++>

=

))((1

))()()((2

))()()()()((3

))()()(

)()()()((4

))()()()((5

1

121

21321

321

4321

4321

ijij

ijijijij

ijijijijijij

ijijij

ijijijijij

ijijijijij

ij

RP

PRPP

PPRPPP

PPP

RPPPP

PPPPR

D

θ
θθθ

θθθθθ
θθθ

θθθθ
θθθθ

)25.0,20.1(~),25.0,50.0(~

)25.0,50.0(~),25.0,20.1(~

43

21

　　　
　　　

��

��

jj

jj

ττ
ττ −−



  

3.23.23.23.2結果結果結果結果と考察と考察と考察と考察    

紙面の都合により，，，，K = 5, 2σ ＝１,
2
eσ = 0, 識別力

高条件における， =� (100, 400, 1600), =n (10, 20, 

40) , Q  = (5,10,15)それぞれの場合での，NTT（最小

二乗基準と最尤基準とベイズ基準の三種類）および項

目和得点に基づく均等分割基準による潜在ランクの推

定値の完全一致率の平均値と±1も含めた一致率の平

均値と標準偏差をTable 1に報告する．        

 

①最適化基準の違いによる影響 

 完全一致率を基準としてNTTの各最適化基準を比

較すると，全体として最小二乗基準に基づいた推定に

比べ，最尤基準，ベイズ基準による推定の方がやや優

れている傾向が見られた．これらは最小二乗法基準に

よる推定が項目特性値の違いを考慮しない為と考えら

れる．また，最尤基準とベイズ基準の比較では，完全

一致率の場合では最尤基準の方が同程度若しくは優れ

ている傾向が見られるが，±１も含めた一致率による

比較では，ベイズ基準の方が総じて優れている結果が

見られた．これは最尤基準（および最小二乗基準）で

は，SOMの性質から両端の潜在ランクに度数が偏る

傾向があるため，両端の潜在ランクの影響で完全一致

率が上昇する一方，中間の潜在ランクへの度数が少な

く見積もられ，この部分の一致率の推定が不安定にな

った結果，±１も含めた一致率が低くなった可能性が

考えられる．ベイズ基準の場合は，最尤基準に比べて

相対的に両端の潜在ランクへの偏りの影響が少なく，

その結果，完全一致率はランクの偏りの影響がある最

尤基準に比べ劣るものの，中間の潜在ランクにおける

±１を含めた一致率の推定が安定していたことが予

想される．これらの傾向は他の条件においても一貫し

て見られた傾向であった．このことは NTTの最適化

基準の選択において，SOMの性質である両端の潜在

ランクへの過度の偏りを抑える為に適切な事前分布を

設定することができれば，一貫性の高さと分析の柔軟

性の観点からは，ベイズ基準が最も望ましい最適化基

準となる可能性を示唆している． 

また，NTTの各最適化基準と均等分割基準の結果を

比べると，均等分割基準において完全一致率は最尤基

準やベイズ基準と同等程度であるが，±１を含む完全

一致率では最も高い値が観察された．これについては，

ベイズ基準においても今回は事前分布の設定が完全に

適切ではなかった為という可能性と，事前分布の設定

の妥当性に関係なく均等分割基準の方が安定的である

ためという可能性が考えられる．また， =� 100でQ

＝15のときはいずれもNTTにおける完全一致率の平

均値は均等分割基準に比べ高かったが，これは受験者

数� の大きさに比べ事前分布の設定が極端であり，

結果的にNTTのいずれの最適化基準においても潜在

ランクの偏りが改善されなかったことに起因すると考

えられる． 

これらの結果をまとめると，各最適化基準では一致

率という観点からそれらの優劣に大きな差があったと

は言えないが，均等分割基準が全体的に最も安定的な

推定値を示していたと言えるだろう．しかしこのこと

は常に均等分割基準の選択が最も優れていることを示

しているわけではない．NTTは項目の識別力や困難度

の違いから生じる，項目得点の度数分布の形状の歪み

を考慮した潜在ランクの推定を行い，似た回答パタン

をする受験者を，その度数の偏りに関係なくランク付

けできることにその特性があることを考えると，均等

分割基準とは根本的に目的が異なる手法であることは

注意すべきであろう． 

 

②変化させたパラメタによる影響 

受験者数� に関しては，その値が大きくなるほど一

致率の推定値の標準誤差も小さくなるが，いずれの推

定法の場合でも一致率の高さに大きな影響は与えてい

ないこと，及び� =100の結果の一部では潜在ランク

の度数分布の偏りの影響が強く影響したために一致率

が高くなっていることが確認される．また，項目数n

についてはその値が大きくなるにつれて一致率が高ま

ることが，いずれの条件においても見られた．これに

ついては，被験者の潜在ランクを推定する為の情報が

増えたことによる影響と考えられる． 

また，潜在ランク数Qの影響については当然，その

大きさが増えるにつれ正確な判別が難しくなる為にそ

の一致率が低下していた．n ＝40の場合であっても，

Q＝15以上となると四種類全ての最適化基準におい

て完全一致率は5割以下となった．また，Q＝５の場

合でもn が20程度では，いずれの最適化基準におい

ても完全一致率が7割程度であったという結果は，項

目を超えたサンプリングとしての一貫性を維持するこ

との難しさを認識することができる． 



Table 1.1 K = 5, 2σ ＝１,
2
eσ = 0, 識別力高条件における，最小二乗基準および最尤基準に

よる一致率の平均値と標準偏差 

    最小二乗基準    最尤基準   

  完全 SD ±１ SD  完全 SD ±１ SD 

n ＝10 � =100 Q =5  0.5471 (0.0388)  0.8689 (0.0296)   0.6057 (0.0364)  0.9164 (0.0233) 

  Q =10  0.3821 (0.0342)  0.6268 (0.0465)   0.4436 (0.0337)  0.6975 (0.0458) 

  Q =15  0.2750 (0.0350)  0.4404 (0.0347)   0.3218 (0.0389)  0.4854 (0.0516) 

 � =400 Q =5  0.5218 (0.0219)  0.8859 (0.0189)   0.5797 (0.0191)  0.9131 (0.0127) 

  Q =10  0.3063 (0.0139)  0.6039 (0.0217)   0.3976 (0.0217)  0.7265 (0.0196) 

  Q =15  0.2264 (0.0199)  0.4424 (0.0242)   0.2796 (0.0142)  0.4977 (0.0212) 

 � =1600 Q =5  0.5774 (0.0089)  0.9300 (0.0062)   0.5964 (0.0108)  0.9388 (0.0062) 

  Q =10  0.3196 (0.0105)  0.6480 (0.0095)   0.3423 (0.0108)  0.6972 (0.0109) 

  Q =15  0.2265 (0.0104)  0.4719 (0.0117)   0.2719 (0.0104)  0.5493 (0.0129) 

n = 20 � =100 Q =5  0.6732 (0.0384)  0.9618 (0.0216)   0.6964 (0.0330)  0.9754 (0.0174) 

  Q =10  0.4739 (0.0363)  0.7814 (0.0370)   0.4957 (0.0379)  0.7793 (0.0377) 

  Q =15  0.3682 (0.0364)  0.6107 (0.0456)   0.4004 (0.0365)  0.6496 (0.0276) 

 � =400 Q =5  0.6174 (0.0212)  0.9572 (0.0120)   0.6676 (0.0164)  0.9746 (0.0089) 

  Q =10  0.4002 (0.0207)  0.7572 (0.0164)   0.4708 (0.0183)  0.8379 (0.0175) 

  Q =15  0.3015 (0.0211)  0.5834 (0.0198)   0.3557 (0.0166)  0.6574 (0.0212) 

 � =1600 Q =5  0.6278 (0.0125)  0.9656 (0.0047)   0.6688 (0.0099)  0.9786 (0.0030) 

  Q =10  0.4128 (0.0103)  0.8105 (0.0076)   0.4550 (0.0095)  0.8581 (0.0083) 

  Q =15  0.2973 (0.0073)  0.6147 (0.0126)   0.3437 (0.0112)  0.6988 (0.0115) 

n = 40 � =100 Q =5  0.7114 (0.0447)  0.9836 (0.0121)   0.7332 (0.0365)  0.9846 (0.0128) 

  Q =10  0.5114 (0.0547)  0.8586 (0.0258)   0.5586 (0.0427)  0.8721 (0.0339) 

  Q =15  0.4393 (0.0411)  0.6968 (0.0424)   0.4904 (0.0465)  0.7736 (0.0404) 

 � =400 Q =5  0.7167 (0.0161)  0.9925 (0.0434)   0.7396 (0.0175)  0.9946 (0.0029) 

  Q =10  0.4943 (0.0188)  0.8760 (0.0213)   0.5313 (0.0185)  0.9180 (0.0142) 

  Q =15  0.3801 (0.0235)  0.7313 (0.0229)   0.4270 (0.0214)  0.7842 (0.0219) 

 � =1600 Q =5  0.7456 (0.0089)  0.9959 (0.0016)   0.7500 (0.0078)  0.9965 (0.0012) 

  Q =10  0.5112 (0.0155)  0.9173 (0.0068)   0.5567 (0.0105)  0.9474 (0.0043) 

  Q =15  0.3914 (0.0073)  0.7937 (0.0102)   0.4280 (0.0114)  0.8353 (0.0089) 

*「完全」は完全一致率の，「±１」は±１の違いも含めた一致率の平均を意味する． 

 



  

Table 1.2 K = 5, 2σ ＝１,
2
eσ = 0, 識別力高条件における，ベイズ基準および均等分割基準

による一致率の平均値と標準偏差 

   ベイズ基準    均等分割基準  

 完全  SD ±１  SD  完全  SD ±１  SD 

n ＝10 � =100 Q =5 0.5986 (0.0344)  0.9593  (0.0232)  0.5814  (0.0334) 0.9604 (0.0149)  

  Q =10 0.3704 (0.0423)  0.7475  (0.0473)  0.3536  (0.0329) 0.7829 (0.0403)  

  Q =15 0.2904 (0.0467)  0.5332  (0.0499)  0.2411  (0.0421) 0.5518 (0.0468)  

 � =400 Q =5 0.5635 (0.0270)  0.9551  (0.0098)  0.5735  (0.0233) 0.9563 (0.0082)  

  Q =10 0.3732 (0.0210)  0.7680  (0.0232)  0.3518  (0.0252) 0.7386 (0.0194)  

  Q =15 0.2400 (0.0175)  0.5469  (0.0235)  0.2528  (0.0226) 0.5813 (0.0231)  

 � =1600 Q =5 0.5977 (0.0092)  0.9670  (0.0054)  0.6117  (0.0108) 0.9710 (0.0054)  

  Q =10 0.3338 (0.0110)  0.7405  (0.0081)  0.3637  (0.0097) 0.7598 (0.0089)  

  Q =15 0.2494 (0.0109)  0.5854  (0.0136)  0.2700  (0.0101) 0.6144 (0.0118)  

n = 20 � =100 Q =5 0.7007 (0.0450)  0.9900  (0.0111)  0.7139  (0.0378) 0.9989 (0.0031)  

  Q =10 0.4525 (0.0408)  0.8311  (0.0323)  0.4707  (0.0407) 0.9125 (0.0251)  

  Q =15 0.3725 (0.0324)  0.6843  (0.0303)  0.3579  (0.0328) 0.7604 (0.0080)  

 � =400 Q =5 0.6562 (0.0205)  0.9840  (0.0060)  0.6721  (0.0203) 0.9895 (0.0041)  

  Q =10 0.4469 (0.0213)  0.8653  (0.0177)  0.4444  (0.0225) 0.8682 (0.0134)  

  Q =15 0.3369 (0.0197)  0.6842  (0.0183)  0.3266  (0.0227) 0.7235 (0.0205)  

 � =1600 Q =5 0.6766 (0.0081)  0.9878  (0.0023)  0.6617  (0.0090) 0.9879 (0.0020)  

  Q =10 0.4536 (0.0129)  0.8771  (0.0072)  0.4654  (0.0096) 0.8873 (0.0062)  

  Q =15 0.3292 (0.0104)  0.7227  (0.0124)  0.3373  (0.0113) 0.7235 (0.0108)  

n = 40 � =100 Q =5 0.7400 (0.0434)  0.9904  (0.0106)  0.7729  (0.0492) 1.0000 (0.0000)  

  Q =10 0.5354 (0.0495)  0.8914  (0.0293)  0.5675  (0.0490) 0.9596 (0.0200)  

  Q =15 0.4746 (0.0563)  0.8057  (0.0433)  0.4350  (0.0478) 0.8540 (0.0273)  

 � =400 Q =5 0.7369 (0.0186)  0.9972  (0.0024)  0.7602  (0.0146) 0.9988 (0.0016)  

  Q =10 0.5305 (0.0182)  0.9275  (0.0120)  0.5545  (0.0246) 0.9472 (0.0109)  

  Q =15 0.4178 (0.0180)  0.8021  (0.0189)  0.4104  (0.0197) 0.8279 (0.0184)  

 � =1600 Q =5 0.7527 (0.0102)  0.9979  (0.0009)  0.7808  (0.0089) 0.9992 (0.0005)  

  Q =10 0.5605 (0.0114)  0.9529  (0.0046)  0.5540  (0.0130) 0.9535 (0.0055)  

  Q =15 0.4231 (0.0100)  0.8468  (0.0091)  0.4324  (0.0107) 0.8592 (0.0106)  

*「完全」は完全一致率の，「±１」は±１の違いも含めた一致率の平均を意味する． 

 



被験者パラメタの母集団分散（ 2σ )については，い

ずれの最適化基準においても 2σ = 2の方が 2σ = 1に

比べ全体的に1～2割ほど完全一致率が上昇していた．

これは， 2σ が大きいと被験者の能力値のばらつきが

大きくなり，粗い精度しか有していないテストでも被

験者の能力の識別が十分可能であるためだと考えられ

る． 

データに与えるノイズ
2
eσ については，その値が大

きくなるにつれ完全一致率が減少していることが観察

された．実際
2
eσ ＝2といったかなり大きなノイズが

与えられている条件では，
2
eσ ＝0の条件に比べて平

均3割程度の完全一致率の減少が観察された．またこ

のノイズに対する抵抗性については，他のパラメタの

場合と同様，最適化基準による違いは見られなかった．

この結果については，今回は項目の困難度や識別性な

どの項目特性に関係なく全ての項目反応に対して同様

のノイズを与えたことによる影響もあるかもしれない．

すなわち，ノイズを与える項目を差別化することで，

異なる結果が得られる可能性もある． 

    

    

4444分析例分析例分析例分析例    

    

4.4.4.4.1111小論文試験について小論文試験について小論文試験について小論文試験について    

本節では高校生の書いた小論文データを用いた分

析例を示す．小論文試験の評価は，採点者の評価の信

頼性の問題，構成概念妥当性の問題，系列効果や文字

の美醜などのバイアスの問題など，多くの測定論的課

題を孕んでいることはよく指摘されているところであ

る（e.g., Brown, Glaswell, & Harland, 2004 ; Chase, 

1986 ; 平・江上, 1992 ; 宇佐美, 2008）． 

小論文試験の測定論的課題の中でも特に採点者

内・採点者間の評価の信頼性の問題は重要である(e.g., 

渡部他,1988 )．このように評価の信頼性の点で危惧さ

れる小論文試験について，離散化した潜在ランクによ

る評価法が，その信頼性の維持という意味で一つの対

処法となる．また，特に小論文が分析的に評価された

場合，各分析的評価項目の困難度や識別力などの項目

特性が一様でない為に単純な項目和得点をとることが

危惧される一方で，NTTはそれらの違いを反映する可

能性が高く，NTTを利用する意義があると思われる． 

    

    

    

4.24.24.24.2データデータデータデータ    

受験者受験者受験者受験者        

秋田県の県立高校の二年生148名4クラス．平均年

齢16.3歳. 男子70名，女子78名．    

課題課題課題課題        

本論文では「小学校の授業における英語の早期教育は

必要であるか否かについて，あなたの意見とその根拠

が明確になるように，800字以内で論述しなさい．」と

いう小論文のテーマのみを与えられるテーマ型の小論

文を実施した． 

採点者採点者採点者採点者    

 日常的に小論文の作成や評価を行っている専門家二

名と現役の国語教師二名． 

評価基準の設定評価基準の設定評価基準の設定評価基準の設定    

 Remondino(1959)や渡部他(1988)を参考にし，小論

文試験の作成や評価の専門家と協議をしながら，分析

的評価の為の評価基準を作成した．一般に比べ評価基

準を多目に作成してあるが，これは他の研究の目的で

評価構造に関する因子分析を行う為である．Table 2

に示されているように，文章の誤字・脱字や語彙力と

いった言語能力を測る分析的評価項目と，表現力・構

成力・説得力など文章の内容的な質を測る分析的評価

項目を設定してある．採点は，全ての分析的評価項目

において５点満点で，総合評価については 10点満点

で行った．  

 

4.34.34.34.3分析結果分析結果分析結果分析結果    

    

4.3.14.3.14.3.14.3.1記述統計記述統計記述統計記述統計    

採点者四名分のデータを平均し，各分析的評価観点

の基本統計量（平均・標準偏差）と，総合評価点との

相関係数の値をまとめてTable 3に示す． 

各分析的評価観点の平均値は比較的高く，特に「語

句」・「表現」・「課題」・「一貫」・「形式」では特に高い．

またこれらの観点では度数分布が左に裾を引いており，

歪度が小さかった．また，「説得」の観点は平均値が最

も低く，そして総合評価点との相関も最も高い．    

    

4.3.2 NTT4.3.2 NTT4.3.2 NTT4.3.2 NTTによる分析による分析による分析による分析    

総合評価点の採点者間相関の平均が0.512と比較的

高かったことなど，採点者の違いによる評価傾向の違 

 



 

Table 2. 分析的評価観点の名称とその定義 

1,語句：       誤字・脱字はないか．送り仮名は正しく書かれているか． 

2,表現の正確さ：       言葉の表現が正確であり，読み手に言葉の意味が適切に通じるか． 

3, 語彙力： 年齢相応の語彙力があり，表現が稚拙でないか． 

4, 課題内容の解釈：  設問の意図を正しく理解できており，小論文がそれに正しく答える内容となっているか． 

5, 簡潔性：      文章は冗長でなく，簡潔であるか． 

6, 主張の明確性：      自己の主張が，文章内に明確に盛り込まれているか． 

7, 構成：       小論文の内容的構成が適切であり，自然な順序になっているか． 

8, 一貫性：      展開されている主張の論旨が一貫しており，矛盾がないか． 

9, 説得力：      展開されている主張が説得的であり，納得できるか． 

10, 独創性： 文章には書き手自身の独自な視点・発想が盛り込まれていたか． 

11, 形式： 原稿用紙の正しい使い方,及び段落の設定・回答字数について問題はなかったか． 

    

    

                                        

Table 3. 各観点の基本統計量と総合評価との相関係数    

 総合 語句 表現 語彙 課題 簡潔 明確 構成 一貫 説得 独創 形式 
平均 5.98  4.37  4.23  3.96  4.48  3.74  3.93  3.72  4.29  3.12  3.67  4.33  

標準偏差 1.16  0.70  0.55  0.51  0.62  0.63  0.60  0.63  0.65  0.62  0.52  0.96  

相関   0.423  0.545  0.718  0.531  0.556  0.638  0.760  0.694  0.805  0.622  0.702  

    

    

いが比較的小さいことが事前の分析により確認されて

いる為，以下では各分析的評価観点における採点者四

名の平均値の小数点第一桁を四捨五入した値を順序デ

ータとした，NTTによる分析を行う．総合評価点につ

いては後述のように，NTTで求めた潜在ランクや IRT

によって求めたθなどとの相関分析のために用いる．

今回はデータ数が少なく，また最小二乗基準や最尤基

準では潜在ランクの偏りが出ることが懸念された為，

潜在ランク数についてはQ= 5, 10のもとでベイズ基

準による推定を行った．    

 

潜在潜在潜在潜在ランクの度数分ランクの度数分ランクの度数分ランクの度数分布布布布    

潜在ランクの度数分布を以下のFigure 1に示す．

Q=５，Q=10いずれの場合においても，両端の潜在

ランクへの極端な偏りが抑えられていることがわかる．

度数分布の偏りの大きい分析的評価観点が多かった為

か，いずれにおいても番号の大きな潜在ランクに度数

がやや偏っている傾向が見られる． 

 

項目参照プロファイル（項目参照プロファイル（項目参照プロファイル（項目参照プロファイル（ICRPICRPICRPICRP））））の解釈の解釈の解釈の解釈    

紙面の都合により，Q= 5の場合のみにおける，参

照行列VVVV の推定値を利用して作成した ICRPを折れ

線で示した図をFigure 2に示す．「説得」の評価を除

いて，いずれの分析的評価観点においても1点の評価

の度数がほとんどないため，k = 1においては要素が

いずれの潜在ランクにおいても小さな値に推定されて

いる．また，両端のカテゴリには順序制約をかけてい

るため，k = 1とk = 5において，図のように潜在ラン

ク数Qの値に対応してそれぞれ単調減少或いは単調

増加の折れ線が描かれている．困難度が最も高く，ま

た総合評価点との相関の高かった「説得」の観点はい

ずれのランクにおいてもk =５ 

  



 

    

    

    

    

    

    

    

    

    

Figure 1.1  Figure 1.1  Figure 1.1  Figure 1.1  潜在潜在潜在潜在ランクの度数分布ランクの度数分布ランクの度数分布ランクの度数分布((((Q=5)   )   )   )       FFFFiiiigure 1.2gure 1.2gure 1.2gure 1.2        潜在潜在潜在潜在ランクの度数分布ランクの度数分布ランクの度数分布ランクの度数分布((((Q=10))))    

    

の折れ線は低調であり，k =４においてもq が３以上

になってようやく折れ線が上昇する様子が観察される．

また，特に隣接するカテゴリの折れ線が交差する点に

注目すると，q =２はq =１に比べ「簡潔」・「構成」の

観点で，q =３はq =２に比べ「一貫」の観点で，q =

４はq =３に比べ「表現」で，そしてq =５はq =４に

比べ「説得」の評価点が優れていることがわかる．逆

に言えば，他の分析的評価観点では潜在ランクの違い

による折れ線の変化が小さいことを示している．この

ように，NTTでは被験者の所属する潜在ランクを推定

しながら，同時に潜在ランクの違いに応じた各項目に

おける各カテゴリの選択確率の推移を検討することが

できる． 

    

θθθθおよびおよびおよびおよび分析的評価分析的評価分析的評価分析的評価和得点・総合評価点との相関和得点・総合評価点との相関和得点・総合評価点との相関和得点・総合評価点との相関    

    Q＝５とQ＝10の場合の各被験者の潜在ランクの

推定値と，分析的評価得点の項目和得点，総合評価点，

および分析的評価データを IRT（GPCM）を用いて推

定したθとの相関係数をTable 4に示す．（NTTの推

定値との相関はいずれもSpearmanのρを用いてい

る） 

NTTとθは分析的評価データを直接用いて推定し

ている為，分析的評価点との相関は極めて高く，また 

NTTとθとの相関はかなり高い．NTTは，θと極め

て類似した関係を持ちながら，一定の最適化基準のも

とに潜在ランクの推定を行っていることが示唆される． 

    

4.3.3 4.3.3 4.3.3 4.3.3 異なる手法間の採点者間相関係数の推定値異なる手法間の採点者間相関係数の推定値異なる手法間の採点者間相関係数の推定値異なる手法間の採点者間相関係数の推定値    

    ４名の採点者のローデータを用いて，異なる手法間

の採点者間相関係数を比較する．分析的評価点から

NTTによりQ= 5, 10で推定した潜在ランク(NTT5, 

NTT10) ・IRT（GPCM）により推定したθ(IRT)・

θをQ= 5, 10で均等分割して形成した潜在ランク

(IRT5, IRT10)・分析的評価点の和得点（和得点）・分

析的評価点の和得点をQ= 5, 10で均等分割した形成

した潜在ランク(和得点５，和得点10)のそれぞれにお

ける，4名の採点者間相関の平均を示した表がTable 5

である（総合評価は前述の通り0.512であった）．

Table 4. 各手法の推定値間の相関係数 

 ＮＴＴ(Q =5) NTT(Q =10) 総合評価点 分析和得点     θ 

ＮＴＴ(Q =5) 1 0.973  0.765  0.920  0.962  
ＮＴＴ(Q =10) 0.973  1 0.760  0.927  0.982  

総合評価点 0.765  0.760  1 0.892  0.813  

分析和得点 0.920  0.927  0.892  1 0.934  

   θ 0.962  0.982  0.813  0.934  1 
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    Figure 2. 各分析的評価項目の ICRP 

  

*横軸の数字は潜在ランクq を，グラフ中の数字はカ

テゴリ k の番号をそれぞれ意味する． 
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                 Table 5. 各手法における，採点者間相関係数の平均値 

NTT5 NTT10 IRT IRT5 IRT10 和得点 和得点 5 和得点10 

0.340  0.346  0.458  0.358  0.374  0.557  0.402  0.423 

    

 

この結果から，NTTと IRTに基づく方法のいずれ

においても，項目和得点を均等分割する方法に比べて

その相関係数の平均が低いこと，およびNTTと IRT

では若干 IRTを用いた方法の方が高いことがわかる．

特に前者の点については，NTTと IRTいずれの方法

の場合においても推定誤差の影響を幾らか受けている

可能性が高い．採点者間相関という観点からは，NTT

と IRTを用いた方法の高さが似通っていることは興

味深い． 

    

5555総合考察総合考察総合考察総合考察    

    

本論文では荘島(2007)の提案したNTTにおいて，

潜在ランクおよび ICRPの推定精度，項目サンプリン

グを超えた潜在ランクの推定値の一貫性，異なる最適

化基準からの推定値の比較，分析モデルの構築・改良

などの方法論的課題を指摘した．そして，項目サンプ

リングを超えた潜在ランクの推定値の一貫性について，

NTTにおける三つの最適化基準と，項目和得点を利用

した均等分割基準での違いを，若干の改良を加えた多

値型NTTモデルを用いたシミュレーションにて検証

した．その結果，一貫性の高さと柔軟性の観点からは，

NTTの手法の中ではベイズ基準が最も優れているこ

と，またその一貫性は項目和得点を用いた均等分割基

準と同等程度であることが示された．また，小論文デ

ータを用いた分析例を提示し，異なる分析手法に基づ

く分析結果についても比較検討を行った．  

今後の検討課題としてはまず，潜在ランク数Qの事

前分布の設定が挙げられる．今回のシミュレーション

では受験者数� が小さい場合に潜在ランクの度数の

偏りが改善されなかったことから，事前分布を� の関

数で表現する方法や，他にも事前分布を三角分布の形

で表現するなどの工夫の余地があるだろう．また，今

回は潜在ランクの推定精度に関する問題は直接扱うこ

とができなかったため，今後適切な方法に基づいたシ

ミュレーションにより検討していく必要があるだろう．

さらに、今回のシミュレーションで検討した一貫性の

問題における，IRTを用いたθの均等分割基準による

一致率の比較についても今後の検討課題と言える． 

本論文ではNTTの推定アルゴリズムや推定値の一

貫性といった方法論的な内容に力点をおいてきたが，

他にも検証すべき課題がある．それには例えば，潜在

ランクに基づく評価が学習者に与える影響に関する，

教育心理学・教育社会学的な課題が挙げられる．より

具体的には，例えば荘島(2007)やShojima(2008)では，

NTTなどによる離散的な潜在ランクによる評価法に

よって，受験者が過度な競争心に陥ることなく学習を

進めることができると主張しているが，これは評価法

自体に直結する問題であろうか．また，離散的な潜在

ランクの利用により，学習者が一つ上の潜在ランクに

ステップアップする困難度が平均的に高まることによ

って，達成感を持続的に得ることができず，その結果

動機づけが低下してしまう学習者がでてくる可能性も

あるが，このような点に関する考察も必要である． 

さらに，これはNTT独自の問題ではないが，潜在

ランク自体は，たとえば水泳の場合のように，「息継ぎ

ができるレベル」，「10kmの遠泳ができるレベル」と

いった質的で明確な内容を必ずしも意味しないため，

潜在ランク自体にどのような意味を付与し，それを受

験者にいかにフィードバックするかはテストのアカウ

ンタビリティにも関わる問題である．このように，

NTTの実際の利用に対しては受験者に与えうる心理

的影響や社会的影響についても考慮する必要がある． 

    いずれにしても，現場で実用化されつつあるNTT

について，今回検討した方法論的課題や，他にも教育

心理学・教育社会学的課題を含めた課題について，専

門家と実務家を交えた議論が必要である． 
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