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• MAR：ある変数(𝑦𝑦1)が欠測するかどうかは、別の観測変数
( 𝑦𝑦2,𝑦𝑦3, … )にのみ依存し、 欠測値 ( 𝑦𝑦1 )そのものには依存しない。

• MAR に基づく欠測下では、リストワイズ法によってデータ
の削除を行うと多くの場合に推測上のバイアスが生じ、標準
誤差も不当に大きくなる。

• 完全情報最尤推定法（full information maximum likelihood: FIML）
や多重代入法（multiple imputation: MI）はMARに基づく欠測下
において有用な処理法。

復習
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• FIML：各個人（対象）の観測データのみを用いて母数を最尤
推定する方法。補完（代入）を伴わない。

• 観測データのみに基づく尤度は直接尤度（direct likelihood; ま
たは観測尤度や完全情報尤度）と呼ばれる。 *仮に欠測がない場合、
通常の尤度関数は直接尤度に対応する。

• MI:補完モデルと乱数を用いて欠測値を補完し、疑似的な完
全データセットを複数作成する。そして、関心のある分析モ
デルをそれぞれあてはめ、推定結果を統合する方法。

• 補完モデルと分析モデルが明確に区別される。

FIMLとMI

*「欠測値を復元して、1つの尤もらしい完全データセットを作成・統合し分析す
る方法」ではない。

3



• MARが仮定でき、また分布仮定を含めモデルを正しく設定で
きれば、一般に最尤推定量（FIML）は良い特徴（e.g., 標準誤差の
小ささ）をもつ。

• 特に、SEM（構造方程式モデリング・共分散構造分析）で表現可能
な下位モデルを分析モデルとする場合にFIMLの実装は容易
（Newsom, 2015）。

• 回帰分析モデル、因子分析モデル、パス分析、潜在成長モデ
ルなどの種々の縦断モデル。

はじめに：FIMLとMIの使いわけ
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• 補完の実行者と分析者が異なるケースがある（自治体によるデー
タの二次利用を目的とした補完）。例えばMIでは、個人情報が特定
される恐れのある共変量（補助変数）に欠測が依存している場
合でも、このような情報を含めない（複数の）完全データセッ
トを提供可能（高井他, 2016）。

• テストや心理尺度等を通して、その項目和得点を用いた分析
や実践を行う場合、補完を行うMIは直接的で有用。

• ソフトウェアの観点からは、特にSEMで直接表現できないモ
デルを扱う際に、MI の方が容易に実装できる状況も多い（e.g., 
Asparouhov & Muthen, 2022）。例えば階層線形モデル（マルチレベ
ルモデル）や種々の非線形モデル。

• 統計分布や最尤法を前提としない多変量解析法も多い。

はじめに：FIMLとMIの使いわけ
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• FIMLの概要

• MIの概要

• 補助変数の活用

• まとめとMNARの場合

アウトライン
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• 観測データのみを用いた直接尤度を構成し母数を最尤推定。

• 個人（対象）ごとの尤度を考える。

• MAR の欠測例として、1 次試験の得点(𝑦𝑦1)が低い受験者が足
きりにより2 次試験の得点(𝑦𝑦2)が欠測している場合を考える。

• 𝑦𝑦1と𝑦𝑦2のあいだの母相関係数ρを推定したい。

FIML

ID 𝑦𝑦1 𝑦𝑦2
1 55 28
2 36 -
3 20 -
4 69 62
… … …

500 26 -

*50点で足きり

N=500, 母相関ρ =0.6
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• 個人𝑖𝑖の変数𝑦𝑦1, 𝑦𝑦2に関するデータを𝑦𝑦𝑖𝑖1, 𝑦𝑦𝑖𝑖𝑖とする。

• 直接尤度=個人1の尤度×個人2の尤度×個人3の尤度…×個人Nの尤度

• 数式で書けば、
𝑓𝑓(𝑦𝑦11,𝑦𝑦12) × 𝑓𝑓(𝑦𝑦21) × 𝑓𝑓(𝑦𝑦31) × 𝑓𝑓(𝑦𝑦41,𝑦𝑦42) × ⋯× 𝑓𝑓(𝑦𝑦𝑁𝑁1)

直接尤度の例

ID 𝑦𝑦1 𝑦𝑦2
1 55 28
2 36 -
3 20 -
4 69 62
… … …

N=500 26 -

*母数を表す記号は省略
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・リストワイズ削除の場合
（足きりを受けていない受験者集団に限定した分析）
�ρ = 0.347

・FIMLの場合
�ρ = 0.593 （母相関ρ=0.6に近い）

相関係数の推定

ID 𝑦𝑦1 𝑦𝑦2
1 55 28
4 69 62
… … …

𝑓𝑓(𝑦𝑦11,𝑦𝑦12) × 𝑓𝑓(𝑦𝑦21) × 𝑓𝑓(𝑦𝑦31) × 𝑓𝑓(𝑦𝑦41,𝑦𝑦42) × ⋯× 𝑓𝑓(𝑦𝑦𝑁𝑁1)

𝑓𝑓(𝑦𝑦11,𝑦𝑦12) × 𝑓𝑓(𝑦𝑦41,𝑦𝑦42) × ⋯
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• （教育）心理学研究では、SEMを用いたモデルの推定や評価は
広くなされている。

• 回帰モデル、因子分析モデル、パス分析、媒介モデル、多母
集団モデル、潜在成長モデル・交差遅延モデル等の縦断モデ
ル。

• SEMでは一般に、複数の潜在変数と観測変数を伴う線形モデ
ルの表現が可能で、現在でも様々な拡張が行われている。

・最尤法はSEM （共分散構造分析）で最もよく利用される推定法
であり、直接尤度（FIML)の構成も直接的かつ容易。Rのlavaan
パッケージ（Rosseel, 2012）、Mplus 等のSEMの標準的なソフト
ウェアではFIMLに基づく推測が容易に実行できる。

SEMとFIML
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• データの標本平均・（共）分散と、分析モデルの平均・
（共）分散が「近く」なるように、分析モデル内の母数𝜽𝜽を推
定する。後者は平均構造µ(𝜽𝜽)、共分散構造∑(𝜽𝜽)と呼ばれる。

• 最尤法では通常、多変量正規分布に基づく尤度の最大化に
よって、これらが「近く」なるような母数𝜽𝜽の推定を行う。

<尤度関数>*各個人のデータをまとめて𝒚𝒚𝒊𝒊と表記。

𝑓𝑓 𝒚𝒚𝒊𝒊 µ 𝜽𝜽 ,Σ 𝜽𝜽 =
1

(2π)
𝑝𝑝
2|∑ 𝜽𝜽 |

1
2

exp[−
1
2 (𝒚𝒚𝒊𝒊−µ 𝜽𝜽 )TΣ(𝜽𝜽)−𝟏𝟏(𝒚𝒚𝒊𝒊 − µ 𝜽𝜽 )]

＜欠測がある場合の直接尤度＞
各個人で観測された変数に対応する µ 𝜽𝜽 ,∑(𝜽𝜽) の一部要素を利用。

SEMの推定の考え方と直接尤度

𝑓𝑓(𝒚𝒚𝟏𝟏|µ 𝜽𝜽 ,∑(𝜽𝜽)) × 𝑓𝑓(𝒚𝒚𝟐𝟐|µ 𝜽𝜽 ,∑(𝜽𝜽)) × ⋯× 𝑓𝑓(𝒚𝒚𝑵𝑵|µ 𝜽𝜽 ,∑(𝜽𝜽))

*p次の多変量正規分布の密度関数。Tは転置。
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𝑦𝑦2 = α + β𝑦𝑦1 + ε
α:切片、β:回帰係数、ε:残差(平均0, 分散σ2)
・確率変数𝑦𝑦1と𝑦𝑦2の多変量正規性を仮定
・ 𝑦𝑦1の母平均はµ1 、母分散はσ12

⇒
・ 𝜽𝜽 = µ1,σ12, α,β,σ2 T

・ µ 𝜽𝜽 = (µ1,α + βµ1)T

・ Σ 𝜽𝜽 = σ12 βσ12

βσ12 β2σ12 + σ2

・尤度関数

具体例：SEMに基づく回帰分析モデルの推定

𝑓𝑓(𝒚𝒚𝟏𝟏|µ 𝜽𝜽 ,∑(𝜽𝜽)) × 𝑓𝑓(𝒚𝒚𝟐𝟐|µ 𝜽𝜽 ,∑(𝜽𝜽)) × ⋯× 𝑓𝑓(𝒚𝒚𝑵𝑵|µ 𝜽𝜽 ,∑(𝜽𝜽))

⇒母数は5種類。
⇒順に、モデルに基づく𝑦𝑦1 と𝑦𝑦2の平均。

⇒ 𝑦𝑦1の分散 𝑦𝑦1,𝑦𝑦2の共分散
𝑦𝑦1,𝑦𝑦2の共分散 𝑦𝑦2の分散

∗ 𝑦𝑦1と𝑦𝑦2の関係を記述する回帰モデルの設定を通して、(暗に)各変数
の平均や[共]分散を母数𝜽𝜽の関数で記述している。
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データ

モデル

平均 [共]分散

10, 20 100 50
50 200

µ 𝜽𝜽 Σ 𝜽𝜽



• 欠測がある場合の直接尤度

具体例：SEMに基づく回帰分析モデルの推定

ID 𝑦𝑦1 𝑦𝑦2
1 55 28
2 36 -
3 20 -
4 69 62
… … …

N=500 26 -

𝑓𝑓(𝑦𝑦11,𝑦𝑦12|µ 𝜽𝜽 ,∑(𝜽𝜽)) × 𝑓𝑓(𝑦𝑦21, |µ1 ,σ12) × 𝑓𝑓 𝑦𝑦31, µ1 ,σ12 ×
𝑓𝑓(𝑦𝑦41,𝑦𝑦42|µ 𝜽𝜽 ,∑(𝜽𝜽)) × ⋯× 𝑓𝑓(𝑦𝑦𝑁𝑁1, |µ1 ,σ12)

・ µ 𝜽𝜽 = (µ1,α + βµ1)T

・ Σ 𝜽𝜽 = σ12 βσ12

βσ12 β2σ12 + σ2

𝑦𝑦2 に欠測のある個人については、
µ 𝜽𝜽 , Σ 𝜽𝜽 の𝑦𝑦1に対応する要素
（ µ1,σ12）のみを利用。

たとえば、

𝑓𝑓 𝑦𝑦21 µ1 ,σ12 =
1

2πσ12
exp[−

(𝑦𝑦21 − µ1 )2

2σ12
]
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• 回帰分析モデルに限らず、SEMで表現できる下位モデル（e.g., 
因子分析モデル、パス分析）であれば個々のモデルに応じたµ 𝜽𝜽 ,
Σ 𝜽𝜽 の表現が可能なので、欠測があってもさきと同様の方式
の下で直接尤度を構成し母数を推定できる。

• 分析モデルが適切に設定できれば、 MARに基づく欠測データ
処理法として、 SEMの文脈では基本的にFIMLの利用で問題
ない。そのため、この文脈ではMIについての説明を割愛して
いる文献もある（Newsom, 2015）。

補足
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• 一般に、より多くの変数について観測データが得られた個人
の方が全体の推定に与える影響は大きくなる。

• 回帰分析の例では、どの変数が観測されているかに関するパ
タンの総数は2通りなので，集団全体が2つの群に分かれてい
ると見做せる。FIMLはこのような複数の群のデータを扱う多
群モデル（多母集団モデル）としても位置付けられる。

• 観測データの多変量正規性を仮定したSEMのFIMLを説明した
が、MAR に基づく欠測下では通常、変数間が線形的な関係で
あれば、分布が非正規である場合にも𝜽𝜽の推定値は一致性をも
つ（Nが大きくなれば真の値に確率収束する）ことが知られている
（e.g., Yuan & Bentler, 2010）。

補足
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• Zhang & Savalei (2023)…欠測がある場合のFIML における適
合度指標（RMSEA やCFI）の算出に関して。

• Savalei & Rosseel (2022)…分布が正規および非正規である
データに欠測がある際の標準誤差やモデルの検定統計量の算
出に関する包括的なサマリー。

補足
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• FIMLの概要

• MIの概要

• 補助変数の活用

• まとめとMNARの場合

アウトライン
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• 例えば、確定的回帰代入（補完モデルとしての回帰分析モデルから得
られる条件付平均による予測値を補完に用いる方法）を行う場合。

• 𝑦𝑦2の分散の過小推定。

• 残差分散や補完モデルの（切片や回帰係数、残差分散についての）推
定誤差を考慮していない。

単一代入の問題

ID 𝑦𝑦1 𝑦𝑦2
1 55 28
2 36 -
3 20 -
4 69 62
… … …

500 26 -

ID 𝑦𝑦1 𝑦𝑦2
1 55 28
2 36 35.3
3 20 25.7
4 69 62
… … …

500 26 29.3
平均 44.3 (45) 40.2 (40)
分散 236 (225) 142 (225)

共分散 140 (135)
*カッコ内の数字は真の値。
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• MI（Rubin, 1987）はベイズ統計学の枠組の下で構築された、汎
用性の高い欠測データ処理法。

• 3つのステップ：
補完ステップ：補完モデルと乱数を用いて欠測値を補完し、疑
似的な完全データセットを複数作成。
分析ステップ：各完全データセットに対し関心がある（確認的因
子分析モデルなどの）分析モデルをそれぞれあてはめ母数 𝜽𝜽を推定。
統合ステップ： 得られた複数の𝜽𝜽の推定結果を統合。

・補完モデルと分析モデルが明確に区別される。

・MIは、例えばSEMによる表現が困難なモデルに対しても汎
用的に利用できる。SEMの文脈でもMIは実装可能（lavaanや
Mplus）。

MI
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仮想的なデータセット（”-”部分が欠測）

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8

1 - 3 … 4

2 4 - … -

3 2 - … -

4 4 3 … 2

… … … … …

N 5 - … -
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MIの流れ

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 3 3 … 4
2 4 4 … 5
3 2 3 … 3
4 4 3 … 2
… … … … …
N 5 5 … 1

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 4 3 … 4
2 4 3 … 5
3 2 4 … 2
4 4 3 … 2
… … … … …
N 5 5 … 2

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 4 3 … 4
2 4 4 … 5
3 2 2 … 3
4 4 3 … 2
… … … … …
N 5 4 … 2

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 3 3 … 4
2 4 4 … 4
3 2 3 … 4
4 4 3 … 2
… … … … …
N 5 5 … 1

…

完全データセット1 完全データセット2 完全データセット3 完全データセットM

補完ステップ

分析ステップ
(母数の点推定値と誤差[共]分散[標準誤差]）

�𝜽𝜽𝟏𝟏,  V(�𝜽𝜽𝟏𝟏) �𝜽𝜽𝟐𝟐,  V(�𝜽𝜽𝟐𝟐) 

�𝜽𝜽 , V(�𝜽𝜽) 

�𝜽𝜽𝟑𝟑,  V(�𝜽𝜽𝟑𝟑) �𝜽𝜽𝑴𝑴,  V(�𝜽𝜽𝑴𝑴) 

統合ステップ
(最終的な点推定値と誤差[共]分散[標準誤差] ）

*「1つの尤もらしい完全データセットを
作成・統合し分析する方法」ではない



• 大別して、欠測のある変数についての同時事後分布を用い
る方法（joint modeling: JM）と、完全条件付分布を用いる方法
（fully conditional specification: FCS）の2つがある。

• JMでは通常、欠測のある変数が多変量正規分布に従うこと
を仮定する。

• FCS では、欠測のある変数について、他の全ての変数が所
与の下での完全条件付分布を用いて補完し、その作業を各
変数に対して行う。汎用性が高い。

• FCS のアルゴリズムとして、連鎖方程式によるMI（multiple 
imputation by chained equation: MICE, van Buuren & Groothuis-
Oudshoorn, 2011）は近年特に広く利用されている。

補完ステップ：連鎖方程式MICE
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(i) 補完モデルの設定

(ii) 初期値の設定

(iii) 連鎖方程式による補完値の更新

(iv)(iii)の反復

MICEによる補完ステップ

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8

1 - 3 … 4

2 4 - … -

3 2 - … -

4 4 3 … 2

… … … … …

N 5 - … -
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(i) 補完モデルの設定
・𝑦𝑦が連続変数の場合、補完モデルとして線形回帰モデルが
用いられることが多い。

・補完モデルには、分析モデルにない変数（たとえば、𝑧𝑧1,
𝑧𝑧2, … ）も含めてよい。分析モデル内の変数は原則含める。

MICEによる補完ステップ

(ii) 初期値の設定
・単一代入など、適当な方法
で得た初期値により欠測値を
補完して疑似的な完全データ
セットを作成する。

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 2.7 3 … 4
2 4 2.6 … 1.9
3 2 2.1 … 3.2
4 4 3 … 2
… … … … …
N 5 4.3 … 2.324



(iii) 連鎖方程式による補完値の更新(𝑦𝑦1)

• 𝑦𝑦1内にある欠測値を、疑似的な完全データセット内の𝑦𝑦2,
𝑦𝑦3. . . , 𝑦𝑦8を用いた𝑦𝑦1の補完モデルから生成された補完値に
より補完し更新する。

MICEによる補完ステップ

*補完モデルとして線形回帰モデルを用いた場合の例。
*補完モデルには、分析モデルにない変数（たとえば、𝑧𝑧1 ,𝑧𝑧2, … ）も含めてよい。

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 2.7 ⇒ 3.1 3 … 4
2 4 2.6 … 1.9
3 2 2.1 … 3.2
4 4 3 … 2
… … … … …
N 5 4.3 … 2.3



・モデル内の母数（偏回帰係数𝜷𝜷、残差分散σ2）のサンプルを得
て、それを用いて補完値を乱数により生成する。

・ 𝑞𝑞 (=8-1=7)個の独立変数を含む線形回帰モデル(𝑦𝑦1 =α+
β2𝑦𝑦2 +β3 𝑦𝑦3 + ⋯+β8 𝑦𝑦8 +ε)において、�𝜷𝜷, �σ2を完全ケース(サイズ
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜)からの推定値、 �𝑽𝑽を�𝜷𝜷の共分散行列の推定値とする。

・ �𝜷𝜷, �σ2の標本分布からのサンプルは、

σ∗ = �σ 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜−𝑞𝑞
𝑔𝑔

,       𝜷𝜷∗ = �𝜷𝜷 + σ∗

�σ
𝑢𝑢1�𝑽𝑽

1
2

で得られ、 𝑦𝑦1で欠測が生じている個人𝑖𝑖のデータ𝑦𝑦𝑖𝑖𝑖∗ は、標準
正規分布からの乱数𝑢𝑢𝑖𝑖𝑖を用いて、以下から生成される。

𝑦𝑦𝑖𝑖𝑖∗ = α∗ + β2∗𝑦𝑦𝑖𝑖2 + β3∗𝑦𝑦𝑖𝑖3 + ⋯+ β8∗𝑦𝑦𝑖𝑖8 + 𝑢𝑢𝑖𝑖𝑖σ∗

補足：補完モデルが線形回帰モデルの場合
(Rubin, 1987; 野間, 2017)

𝑔𝑔: 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑞𝑞を自由度とするカ
イ二乗分布からの乱数。
𝑢𝑢1: 𝑞𝑞次の多変量正規分布から
の乱数。
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(iii) 連鎖方程式による補完値の更新(𝑦𝑦2)

• 𝑦𝑦2内にある欠測値を、疑似的な完全データセット内の𝑦𝑦1,
𝑦𝑦3. . . , 𝑦𝑦8を用いた𝑦𝑦2の補完モデルから生成された補完値に
より補完し更新する。

MICEによる補完ステップ

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 3.1 3 … 4
2 4 2.6⇒2.9 … 1.9
3 2 2.1⇒1.8 … 3.2
4 4 3 … 2
… … … … …
N 5 4.3⇒4.6 … 2.3
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(iii) 連鎖方程式による補完値の更新(𝑦𝑦8)

• 𝑦𝑦8内にある欠測値を、疑似的な完全データセット内の𝑦𝑦1,
𝑦𝑦2. . . , 𝑦𝑦7を用いた𝑦𝑦8の補完モデルから生成された補完値に
より補完し更新する。

MICEによる補完ステップ

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 3.1 3 … 4
2 4 2.9 … 1.9⇒1.7
3 2 1.8 … 3.2⇒3.5
4 4 3 … 2
… … … … …
N 5 4.6 … 2.3⇒2.0
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(iv)(iii)の更新の反復

(ii)の初期値は通常ラフなものであり、 𝑇𝑇回の反復（後述の
mice関数では、”maxit”に対応）を経て単一の疑似的な完全データ
セットを得る。そして、ここまでの一連の作業を𝑀𝑀回行い𝑀𝑀
個の完全データセットを得る。

MICEによる補完ステップ

補完ステップ終了
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• 線形回帰モデルを用いた補完で、特に残差の非正規性や変
数間の非線形的な関係が疑われる場合には、予測平均マッ
チング（predictive mean matching: PMM）が利用されることも
多い。

• 変数 𝑦𝑦に欠測のある個人𝑖𝑖 について、補完モデルを基に生成
された予測値𝑦𝑦𝑖𝑖∗と、𝑦𝑦が観測されている個人について計算さ
れた予測値 �𝑦𝑦との距離が近い個人を複数人選択し、そこから
ランダムに選ばれた1 名の個人𝑖𝑖′の観測値𝑦𝑦𝑖𝑖′を用いて個人𝑖𝑖
の欠測値を補完する。

• このように補完値として観測値を利用することで、元々の
データの分布を反映した補完が実現できる。

補足：予測平均マッチング
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ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 - 3 … 4
2 4 2.6 … 1.9
3 2 2.1 … 3.2
4 4 3 … 2
… … … … …
N 5 4.3 … 2.3

ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 3.2 3 … 4
2 4 (3.8) 2.6 … 1.9
3 2 (2.4) 2.1 … 3.2
4 4 (3.3) 3 … 2
… … … … …
N 5 (3.1) 4.3 … 2.3

個人1のデータが欠測 各個人の予測値を算出（赤字部分）

予測値が近い個人を複数選択
ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 3.2 3 … 4
2 4 (3.8) 2.6 … 1.9
3 2 (2.4) 2.1 … 3.2
4 4 (3.3) 3 … 2
… … … … …
N 5 (3.1) 4.3 … 2.3

その中からランダムに選ばれた1名の
観測値により補完（ここでは個人4）
ID 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦8
1 4 3 … 4
2 4 2.6 … 1.9
3 2 2.1 … 3.2
4 4 3 … 2
… … … … …
N 5 4.3 … 2.3

補足：予測平均マッチング（ 𝑦𝑦1を補完する場合）



• 分析の段階：得られた𝑀𝑀個の完全データセットに対して、
分析モデル（e.g.,確認的因子分析モデル）をそれぞれあてはめる。

• 分析モデル内の母数𝜽𝜽について、𝑀𝑀種類の点推定値と標準誤
差（または誤差共分散行列）が得られる。

分析ステップ

32



統合の方法（Rubin’ s rule）：
• 点推定値（ �𝜽𝜽）として、各完全データセットから得られた推
定値（ �𝜽𝜽𝒎𝒎; 𝑚𝑚 = 1,2 …𝑀𝑀)の平均を利用する。すなわち、

である。

統合ステップ

�𝜽𝜽 =
1
𝑀𝑀 �

𝑚𝑚=1

𝑀𝑀

�𝜽𝜽𝒎𝒎
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• �𝜽𝜽の誤差共分散行列V(�𝜽𝜽)は、各完全データセットから得られ
た�𝜽𝜽𝒎𝒎の誤差共分散行列の推定値V(�𝜽𝜽𝒎𝒎)を利用して、

となる(e.g., 高井他, 2016, pp.117-118)。ここで、

であり、 𝑾𝑾𝑴𝑴および𝑩𝑩𝑴𝑴はそれぞれ、補完値内・補完値間の
共分散行列と呼ばれる。

・特定の母数𝜃𝜃に関する標準誤差の推定値 se �𝜃𝜃 は、V �𝜽𝜽 の
対応する対角要素の正の平方根に等しい。

統合ステップ

V �𝜽𝜽 = 𝑾𝑾𝑴𝑴 + (1 + 1
𝑀𝑀

) 𝑩𝑩𝑴𝑴

𝑾𝑾𝑴𝑴 =
1
𝑀𝑀 �

𝑚𝑚=1

𝑀𝑀

V(�𝜽𝜽𝒎𝒎） , 𝑩𝑩𝑴𝑴 =
1

𝑀𝑀 − 1 �
𝑚𝑚=1

𝑀𝑀

(�𝜽𝜽𝒎𝒎 − �𝜽𝜽)(�𝜽𝜽𝒎𝒎 − �𝜽𝜽)𝐓𝐓

*M個の誤差分散の推定値を単に平均するだ
けではなく、M個の推定値間の変動も考慮。
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• 特定の母数𝜃𝜃に関する帰無仮説（𝐻𝐻0: θ = 0）の検定：

• θに関する100(1 − α)% 信頼区間：

自由度𝑣𝑣の1つの推定量として、

統合ステップ

𝑡𝑡 =
�𝜃𝜃

se �𝜃𝜃

�𝜃𝜃 ± 𝑡𝑡𝑣𝑣,𝛼𝛼/2 se �𝜃𝜃 ∗ 𝑡𝑡𝑣𝑣,𝛼𝛼は自由度𝑣𝑣 の𝑡𝑡分
布の上側100𝛼𝛼% 点

∗𝐵𝐵𝑀𝑀,𝑊𝑊𝑀𝑀は、対応する𝑩𝑩𝑴𝑴
および𝑾𝑾𝑴𝑴の（対角）要素

𝑣𝑣 = (𝑀𝑀 − 1)(1 +
1
𝑟𝑟)2, 𝑟𝑟 = (1 +

1
𝑀𝑀)

𝐵𝐵𝑀𝑀
𝑊𝑊𝑀𝑀



• SEMにより表現可能な分析モデルを扱う場合、例えばR の
semTools パッケージやmitml パッケージ（Grund, Robitzsch, 
& Ludtke, 2021）を用いて、推定結果の統合や検定を行うこと
ができる。

• Enders(2023, p.9) のレビューでは、尤度比検定を行う場合も
含め、統合ステップでの推測法に関する最新の知見がまと
められている。

• Lee & Cai (2012) およびEnders & Mansolf (2018) …MI を
適用した際のSEM の検定統計量および適合度指標の算出に
ついて。⇒R のsemTools パッケージが利用できる。

• Liu et al (2021)…順序データの欠測に対してMI を適用した
際の適合度の評価について。

補足
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• 従来𝑀𝑀 =5,10程度で十分とされてきたが、近似推測法であ
るMIにおいては、十分な数の𝑀𝑀が必要（野間、2017, p.69）。

• Graham et al. (2007) は𝑀𝑀 = 20 を推奨し、またHuque et al. 
(2018) のシミュレーションでは𝑀𝑀 = 40 である。

• 野間（2017, p.69）では、𝑀𝑀 = 100 − 1000 程度であっても
現在の計算機環境であれば必ずしも大きな負荷とならず、
そのため十分な数の𝑀𝑀を設定することが望ましいと述べて
いる。

• 特に欠測の割合が高いときには、より大きな𝑀𝑀 が求められ
る。大まかな目安として、少なくとも𝑀𝑀 = 20、可能であれ
ば𝑀𝑀 = 50, 100程度は確保したい。

補足：疑似的な完全データセット数𝑀𝑀 について
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・動機づけに関する計8変数を含む人工データ(N=300)。 MAR
に基づく欠測を仮定し、 𝑦𝑦1 ～𝑦𝑦8全体で欠測の割合は3.5%。

・ 𝑦𝑦1～𝑦𝑦4が内発的動機づけ因子（Int）を、 𝑦𝑦5 ～𝑦𝑦8が外発的
動機づけ因子（Ext）を反映する2因子の確認的因子分析モデ
ル(CFA)の推定に関心がある状況を考える。

・FIML とMI（MICE とPMMによる補完、 𝑀𝑀 = 100）を使って、
CFA内の母数を推定。

・MI において、各完全データセットにモデルをあてはめる
際には最尤推定を用いた。また、例証のため、リストワイズ
法(N=209)、および（通常は得られない）欠測のない完全データ
(N=300）に基づく分析（いずれも最尤推定）も実施。

FIMLとMIの分析例（確認的因子分析）
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推定結果（因子負荷と因子間相関）

MI
(N=300)

FIML 
(N=300)

Listwise 
(N=209)

Complete 
(N=300)

推定値 標準誤差 推定値 標準誤差 推定値 標準誤差 推定値 標準誤差
Int ⇒x1 0.632 0.084 0.634 0.094 0.462 0.102 0.612 0.082
Int ⇒x2 0.745 0.075 0.744 0.079 0.736 0.100 0.755 0.073 
Int ⇒x3 0.554 0.079 0.560 0.087 0.471 0.098 0.532 0.077 
Int ⇒x4 0.562 0.076 0.562 0.078 0.543 0.097 0.581 0.074 
Ext ⇒x5 0.958 0.073 0.958 0.072 0.917 0.089 0.958 0.071 
Ext ⇒x6 1.209 0.069 1.214 0.069 1.155 0.083 1.222 0.067 
Ext ⇒x7 0.838 0.062 0.846 0.063 0.863 0.075 0.825 0.061 
Ext ⇒x8 0.698 0.079 0.694 0.082 0.669 0.094 0.703 0.077 
Int⇔Ext 0.398 0.069 0.393 0.070 0.398 0.087 0.403 0.067 

CFI 0.906 0.909 0.896 0.913 
RMSEA 0.099 0.098 0.099 0.099 
SRMR 0.065 0.064 0.068 0.064 

*Completeは（通常は得られない）欠測値のない完全データセットを分析した場合
*CFI, RMSEA, SRMRはモデルの適合度指標。 40



• 各方法においてCFAのあてはまりは良好であり、またMI と
FIML の推定値には大きな違いは見られない。

• いまMAR に基づく欠測であることを反映して、完全データ
（Complete）とMI およびFIML の点推定値は類似している。
欠測があることを反映して、これらにおける標準誤差は完
全データの場合と比べて若干ではあるが大きくなる。

• リストワイズ法では他と比べて推定値に乖離（過小推定）が
生じている。標準誤差も、完全データの場合と比べて概ね
10%-20%程大きくなっている。⇒検定力、更には研究の結
論にも影響し得る。

推定結果
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• FIMLの概要

• MIの概要

• 補助変数の活用

• まとめとMNARの場合

アウトライン
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• FIML やMI ではMAR に基づく欠測を仮定している。これら
の分析が正当化されるためには、欠測の生起（𝑟𝑟）を説明で
きる観測変数（𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜）が適切に分析モデル内に投入される必
要がある。

• 一方で、欠測の生起（𝑟𝑟）および欠測値（ 𝑦𝑦𝑚𝑚𝑚𝑚𝑠𝑠 ）を説明でき
る変数が実際にどの程度観測でき、また分析モデルに反映
されているのかに関する度合いには幅がある。

• その意味で、MAR の仮定が実際にどれだけ充たされている
のかという問いは、程度問題と言える（Graham, 2009; 
Newsom, 2015）。

補助変数ーMARかMNARかー
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• 特に欠測の割合が多いとき、分析モデルには元々含まれて
いないが、 𝑟𝑟や𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚と相関があると考えられる観測変数を収
集しモデルに投入することで、MAR の蓋然性を高められる
可能性がある。

• このような観測変数は補助変数（auxiliary variable）と呼ばれ、
仮にそれが欠測の直接的な原因となっていなくとも、投入
により推定値のバイアスが低減し標準誤差も小さくなるこ
とが期待される。

• 縦断デザインにおいて（分析モデルに投入されていない）過去の
ラグ付き変数やベースラインの情報はしばしば有用。また、
特に大規模調査データ・ビッグデータを扱う場合は補助変
数の候補は多数あり得る。

補助変数の意義
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• MI では分析モデルと補完モデルが明確に区別されているた
め、収集した補助変数を補完モデルに含めて分析を実行す
ればよい。

• SEM のFIML において補助変数を考慮した分析アプローチ
は幾つか知られているが（e.g., Newsom, 2015, pp.18-25; Enders, 
2023; pp.5-6）、飽和した相関アプローチ（saturated correlated 
approach）は簡便。Mplus やR のSemTools パッケージで実
装できる。

• この方法では、モデル内に元々投入されている変数（の残
差）と補助変数間の相関を仮定したモデルを新たに設定する
ことで、当初の分析モデルの構造に影響を与えずに補助変
数を考慮する。

補助変数を考慮した分析
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飽和した相関アプローチ（CFA）
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・経験的に、 𝑟𝑟や𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚との相関がかなり高い補助変数が投入
されない限り、分析結果に与える変化は小さいことが多い。

・SEMで表現可能な分析モデルを扱う際、モデル適合に関す
る検定統計量（ χ2 ）や自由度は補助変数の投入前後で変わら
ないため、RMSEA の指標値も変化しない。

・CFI の算出に際しては、あくまで（投入前の）元々の分析モ
デルの適合を吟味することが目的のため、補助変数により導
入された相関を含めたモデルを独立モデルとして設定する。

・補助変数に関わる共分散行列内の要素は（飽和しているため）
適合が完全になり、SRMR を算出すると適合が過大評価され
る。そのため、補助変数を除外した上での算出が推奨される。

・RのSemTools パッケージでは以上の点を考慮した指標値
が返される。

補足
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• FIMLの概要

• MIの概要

• 補助変数の活用

• まとめとMNARの場合

アウトライン
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・特にSEMの下位モデルを扱う場合のように、直接尤度の設
定・評価が容易に実行できる状況では、FIMLを利用すれば
よい。モデルが正しく設定されていれば有効性（標準誤差）の
観点からも優れている。

・特に欠測の割合が大きいとき、分析モデルに含まれないが、
欠測を説明するのに有用な補助変数があれば、それを含めた
分析（e.g., 飽和した相関アプローチ）も有用。

・補完モデルと分析モデルを明確に区別したMI、特にMICE
は汎用性の高い方法であり、様々な分析モデルに対して柔軟
に適用可能であり、ソフトウェア上の実装も容易。

まとめ
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・モデルが正しく設定されていれば，FIMLとMIが互いにか
なり類似した結果を示すことは経験的にもよく知られている
（本資料の分析例、およびGraham, 2009; Lee & Shi, 2021）。

・一方で、実際にはモデルの誤設定を避けることは非常に困
難であり、このときFIMLとMIの間で推定結果に大きな乖離
が生じる可能性もある（e.g., Lee & Shi, 2021）。このような点
を含めたFIMLとMIの比較と選択については、現在でも研
究・議論の余地がある。

補足ーFIMLとMIの比較と選択ー
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• 欠測データの分析に際しては、欠測データメカニズムや各
分析法に内在する仮定を吟味しながら適切な分析方法を選
択していくことが求められる。

• 分析結果の報告に際して、欠測の割合やその処理方法が明
記されていないケースは多い。例えば、経営学や心理学領
域での文献調査を行ったZyphur et al (2023) では、処理方
法について説明があった論文は全体の34% であったことを
報告している。

• また、分析上の工夫だけではなく、様々なデータ収集上の
工夫も重要である。

• たとえば質問紙調査の場合に、内容が不必要に複雑で理解
や回答のしにくい質問項目を修正・削除することで欠測が
生じるリスクを下げることや、欠測の有無を説明できる補
助変数を予め吟味し収集することなどが挙げられる。

よりよい分析実践のために
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• MAR（およびMCAR）に基づく欠測とは考えられず、また有
力な補助変数の情報が十分得られない（または、提供されてい
る多重代入データを使う場合に補助変数の情報が十分反映されていな
い）場合、すなわちMNAR に基づく欠測である場合は、
FIML やMI による推測結果には大きなバイアスを伴う可能
性がある。

• ＭＮARにおいては、欠測指標𝑟𝑟についてのモデリングが必
要。

MNARの可能性と感度分析
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• MNARの場合の分析法として、選択モデル、混合モデルな
どがある（Enders, 2011; Newsom, 2015; 高井他, 2016）。

• ただし現状、絶対的に優れた方法があるとは言えない。

• MNAR に基づく欠測が想定される場合には、感度分析の実
行は有用。異なる方法に基づく推定結果の間に大きな乖離
が見られないのであれば、方法の選択如何が最終的な結論
に与える影響は小さいものと結論づけられる。

• もし推定結果に大きな乖離が見られるのであれば、実質科
学的な見地や先行研究等の外的な情報も踏まえながら、判
断され得る結論の範囲を示すことが求められる。

MNARの可能性と感度分析
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