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個人内関係の推測と統計モデル 
―ランダム切片交差遅延パネルモデルを巡って― 
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縦断的に測定された多変数間の変化の関係を推測する目的で，交差遅延パネルモデル
(cross-lagged panel model: CLPM)が心理学を中心に広く利用されてきた。同時に，個人間
の異質性を統制して個人内の変化のプロセスである個人内関係を捉えることは，縦断デー
タに基づく因果推論の主幹をなすものとされている。個人内関係の推測上の限界から
CLPM の利用を批判したHamaker, Kuiper, & Grasman (2015)以後，時間的に安定した個人
差としての特性因子を組み込んだランダム切片交差遅延パネルモデル(random intercept 
CLPM: RI-CLPM)が，心理学領域を中心に急速に普及している。一方で，個人内関係の推
測のために利用可能な統計モデルは多くあるが，その違いは必ずしも明確に区別されてお
らず，また個々の統計モデルの解釈やその選択を巡る議論は現在でも活発になされている。
本稿では，個人内関係を推測するための一つの有効な方法として RI-CLPM を位置付けて
その適用の実際について解説し，そして他の統計モデルとの数理的・概念的関係性およびそ
れらの個人内関係の推測において生じうる問題点について整理していく。特に，RI-CLPM
の特性因子は個人内変動とは無相関な量と仮定している点に個人間の異質性を表現する上
での特徴があり，またそれが他の有力な統計モデルの選択肢としての動学的パネルモデル
との数理的関係性を繋ぐ接点にもなることを指摘する。 
【キーワード】縦断データ，個人内関係，因果推論，交差遅延パネルモデル，構造方程式モ
デリング 
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問題と目的 
 

説明的研究と CLPM 
縦断研究の数は年々増加し，現在では年間一万件を優に超える論文が世界で発表されて

いる。（発達）心理学や周辺領域で報告されている定量的な縦断研究の多くは記述的研究
（descriptive research）または説明的研究（explanatory research）と位置づけられる 
（Hamaker, Mulder, & van Ijzendoorn, 2020）。記述的研究は，発達・成長等の変化の軌跡
（パタン）やその個人差・集団差の実態把握を目的としたものであり，統計モデルとしては
潜在成長モデルや潜在成長混合モデル，他にも階層線形モデル（または，混合効果モデルや
マルチレベルモデルなどとも呼ばれるモデル）などがよく利用される。一方，説明的研究は
変化を引き起こしている原因は何かを明らかにしその効果を定量的に推測すること，すな
わち因果推論（causal inference）を志向した研究である。 
因果推論における中核的なテーマに交絡（confounding）の問題があり，とりわけ調査・

観察研究ではその問題が生じ易い。交絡変数（confounder）の定義については現在でも議論
があるが（VanderWeele & Shpitser, 2013)，本稿では，「ある独立（説明）変数 X から従属
（目的）変数 Y への効果を推測する際に，Y に影響し，かつ X にも影響する（または共変
し，共分散がある）ような変数」を指すものとする。交絡変数は時点によってその値が変わ
る時変的（time-varying）なものと，値が変わらない時不変的（time-invariant）なものに区
別される。縦断研究の統計分析では過去の測定データ（ラグ付き変数）から説明される効果
や，他にも潜在変数としての個人効果（または個別効果; unit effect）を統計モデルの中に導
入する。このような手続等を通して，交絡変数，更にはより広義な意味としての個人間の異
質性（heterogeneity）を統制することで変数間の因果関係により迫った検証が可能になる。 
 （発達）心理学研究でよく見られる説明的研究のタイプとして，時変的な二変数（または
多変数）間どうしの関係である相互関係（reciprocal relationあるいは mutual relation)につ
いての推測が挙げられる。例えば，睡眠習慣の改善が精神的健康に影響を与えるのか，逆に
精神的健康の改善が睡眠習慣に影響を与えるのか，あるいは両方の関係が見られるのかと
いった仮説についてである。この推測を目的として主に 1990 年代から現在まで心理学を中
心に広く使われてきた統計モデルが交差遅延パネルモデル（cross-lagged panel model: 
CLPM）である。CLPM は，交絡の問題への対処としてラグ付き変数を統制した回帰モデ
ル(cross-lagged regression)として位置付けられる。 
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CLPM が普及した背景の一つに，時間を隔てて測定されたある二変数間の単相関（cross-
lagged correlation; 例えば後述する記号を使うと，𝑋𝑋1と𝑌𝑌2や，𝑋𝑋2と𝑌𝑌1の相関）やその差を用
いて相互関係を推測することへの批判（e.g., Rogosa, 1980）があったことが挙げられる。こ
の点に加えて，構造方程式モデリング（structural equation modeling: SEM）とその専用の
ソフトウェアの整備がその後急速に進んだことも CLPM の普及を後押しした。心理学を含
む医学系の国際学術誌に 2009 年以降に掲載された計 270 件の論文を対象に文献調査を行
ったUsami, Todo, & Murayama (2019)によると，相互関係の推測を目的に使われた統計モ
デルのうち実に 9 割以上が CLPM であった。このように CLPM は心理学の説明的研究に
おいて不動の地位を築いてきたと言えるだろう。 
 一方，CLPM の普及が進んだ時期と概ね重なって潜在成長モデル（latent growth model: 
LGM; または潜在曲線モデル[latent curve model: LCM]; Meredith & Tisak, 1984, 1990）も
普及し，2000 年代以降は LCM と CLPM を融合した統計モデルも複数提案されてはいた
が，これら CLPM 以外の選択肢を知る利用者の数は限られていた。加えて，これらのモデ
ルは CLPM の利用を直接的に否定する意図で提案されたものではなかった。 
個人内関係の推測と RI-CLPM 
 しかし，比較的最近になって CLPM は大きな批判を受け，方法論の面と応用面の双方で
重要な転換点を迎えた。その転機となったのが Hamaker, Kuiper, & Grasman (2015)である。
この論文で扱われている主要な論点が，本特集のテーマである個人内関係（within-person 
relation）1)である。個人内関係は，「ある人がより長い時間睡眠をとればその人はより精神
的に健康になる」といった，個人内変化のプロセスにおいて見られる関係である。個人内関
係は，集団における相関関係（group-level relation）或いは個人間関係（between-person 
relation）としばしば対比される概念であり，これらは互いに同一ではない。むしろ，極端
な状況では，「ある人が強度の高い運動をすることは心臓発作を引き起こす（＝個人内関係）
一方で，日常的に運動をしている人ほど平時の心臓発作のリスクは低い（＝個人間関係）」
といったように，これらの関係は真逆にもなりうる（Curran & Bauer, 2011）。一般に，それ
があり得る交絡変数の影響を適切に統制したものとは必ずしも限らないことから個人内関
係は因果関係とは必ずしも等価ではないが，個人内関係は因果関係の推測の主幹をなすも
のとされている。著者のHamaker 自身も，Hamaker (2012)などを通して個人内関係の推測
の重要性を以前から主張していた研究者であった。 

Hamaker et al. (2015)の主な批判は，CLPMを通して推測できる変数間の関係は，個人間
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関係と個人内関係が混在しており，個人内関係を純粋に反映したものではないという点に
ある。そして，個人内関係を推測するための統計モデルの一つとして，安定的な個人差を表
す量としての特性因子（stable trait factor）をランダム切片として CLPM に含めた，ランダ
ム切片交差遅延パネルモデル（RI-CLPM: random intercept CLPM）を提示した。この論文
は心理統計学の主要な国際学術誌の一つである Psychological Methods の特集号
（longitudinal topics）にて発表され，Hamaker ら著者が所属している欧州を引き金に RI-
CLPM の普及が爆発的に広がった。実際，本稿を執筆している 2022 年 3月現在でこの論文
は 1350 回以上引用されており，そのインパクトの大きさが窺われる。今後も，CLPM に取
って代わる勢いで，RI-CLPM の適用事例がさらに増加していくことが予想される。 

CLPM と RI-CLPM の数理的な違いは僅かであるが，相互関係の方向性（e.g., X⇒Yか Y
⇒X か，あるいは両方か）や効果の大きさ，符号（正負）等の推測の結果がモデル間でしば
しば大きく異なることが経験的に知られている。Hamaker et al. (2015)の批判が（特に，発
達やパーソナリティを中心とした）心理学の研究者に強い影響を与えた事実にはこのよう
な現実的側面も関わっており，RI-CLPMなどを用いたデータ分析結果の比較検討や二次分
析の試みもみられている（e.g., Usami, Todo et al., 2019; Orth, Clark, Donnellan, & Robins, 
2021）。そして，欧州での普及から少し間を置いて，国内の心理学や周辺の研究領域におい
ても，個人内変化のプロセスとしての相互関係の推測を意図した RI-CLPM の適用事例が
徐々に増えてきている。 
一方，上述のように，（個人内変化のプロセスとしての）相互関係を表現した統計モデル

は心理学研究や周辺の領域で提案されたものだけでも既に数多く存在し，これらのモデル
は基本的に SEM を通して推定され適合度が評価される。この事実は潜在的な交絡変数，更
には個人間の異質性を表現し統制する方法が多様であることを意味する。また，個人内関係
やその推測に関する事柄は心理学において近年特に盛んに取り上げられてきたものの，例
えば経済学など他の研究領域に目を向ければ，必ずしも相互関係のように双方向の関係に
ついての推測を意図したものではないが，動学的（または，動的）パネルモデル（dynamic 
panel data model: DPM; 千木良・早川・山本, 2011; Wooldridge, 2011; Hsiao, 2014）のよ
うに関わりの深い統計モデルが存在する。このように，研究領域が異なれば利用する統計モ
デルや推定法の慣習的な違いがしばしば観察される（e.g., Hamaker & Muthén, 2020）。そ
れでは，これら多くの統計モデルが存在する中で，RI-CLPMの適用は常に正当化されるの
だろうか。そうだとすればそれはなぜだろうか。関連して，安定的な個人差としての特性因
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子を統制することは因果推論の観点からみてどのような意義をもつのだろうか。これらは，
Hamaker et al. (2015)では必ずしも十分に議論がなされていなかった。 
相互関係の推測に利用される統計モデルの比較や選択については著者自身も一定の整理 

を行ってきたが（Usami, Murayama, & Hamaker, 2019; Usami, 2021），統計モデルの種類の
多さも一因として，これらの点を巡る議論は今なお進行中の事柄が多い。そのため，（心理
統計学の）研究者間で共通の見解が必ずしも得られているわけではないのが現状であろう。
むしろ，RI-CLPMについての批判的な論考も最近提出されているなど（Lüdtke & Robitzsch, 
2021)，想定されるデータ発生プロセスや実際の研究仮説の多様性も相俟って，個人内関係
としての相互関係の推測のための方法論を巡る議論は複雑多様化していると言ってよい。
著者の知る限り，RI-CLPM の概説も含めて，これらの話題を俯瞰した文献はないようであ
る。 
本稿の構成 
本稿はの構成は以下のとおりである。まず，CLPM および RI-CLPM のモデル表現につ

いて分析例とともに説明する。次に，個人内関係としての相互関係を推測するための一つの
有効な方法として RI-CLPM を位置付ける立場から，RI-CLPMの適用における実際的な話
題（必要な測定時点数，特性因子の分散に基づく指標，モデルの拡張，測定誤差の仮定と不
適解）を幾つか取り上げて説明する。その後，著者自身の研究（Usami, Murayama et al., 2019; 
Usami, 2021, 2022）を含めた最近の議論を踏まえながら，その他の統計モデルの概要とと
もに個人内関係の推測上生じうる問題点について整理し，RI-CLPM 以外の有力な選択肢と
しての DPMやモデル選択について説明していく。特に，RI-CLPM の特性因子は個人内変
動（within-person variability）とは無相関な量と仮定している点に個人間の異質性を表現す
る上での特色があり，またそれが DPM との数理的関係性を繋ぐ重要な接点にもなること
を指摘する。最後に，本稿のまとめとともに展望を述べる。 
 

CLPM と RI-CLPMの表現と分析例 
 
CLPM の表現 
  以下では，CLPMまたはRI-CLPMを用いる典型的な状況に即して各モデルを説明する。
モデルの表記はUsami, Murayama et al. (2019)に倣っている。Xと Yの 2つの（連続）変
数が同時にかつ縦断的に複数回測定され，これら変数間の変化の相互関係を推測すること
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に関心があるとする。典型的には，後述するように測定時点数𝑇𝑇は 2から 6程度であり，10
時点以上となることはあまりない 2) 。CLPM は，個人 𝑖𝑖 (1⋯𝑖𝑖⋯𝑁𝑁)の離散的な時点
𝑡𝑡 (1⋯𝑡𝑡⋯𝑇𝑇)における測定値𝑥𝑥𝑖𝑖𝑖𝑖および𝑦𝑦𝑖𝑖𝑖𝑖  に対して，𝑡𝑡 ≧ 2のとき， 
 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖(𝑡𝑡−1) + 𝛾𝛾𝑥𝑥𝑥𝑥𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥 
                                                     𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑦𝑦𝑦𝑦 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝛾𝛾𝑦𝑦𝑦𝑦𝑥𝑥𝑖𝑖(𝑡𝑡−1) + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦               (1) 
 
と表現する。ここで，𝛼𝛼𝑥𝑥𝑥𝑥および𝛼𝛼𝑦𝑦𝑦𝑦は各回帰式（cross-lagged regression）の切片項であり，
𝛽𝛽𝑥𝑥𝑥𝑥および𝛽𝛽𝑦𝑦𝑦𝑦は過去(𝑡𝑡 − 1)の測定値であるラグ付き変数（順に𝑥𝑥𝑖𝑖(𝑡𝑡−1),𝑦𝑦𝑖𝑖(𝑡𝑡−1)）から現在(𝑡𝑡)の
同一の変数（順に𝑥𝑥𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖）を説明できる程度を表す自己回帰係数（autoregressive coefficients）
である。この式の場合，一時点前のラグ付き変数への回帰を考えていることから，特に一次
（first-order）の自己回帰係数と呼ばれる。そして，𝛾𝛾𝑥𝑥𝑥𝑥および𝛾𝛾𝑦𝑦𝑦𝑦は，ラグ付き変数（順に，
𝑦𝑦𝑖𝑖(𝑡𝑡−1),𝑥𝑥𝑖𝑖(𝑡𝑡−1)）から現在の別の変数（順に，𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖）を説明できる程度を表す（一次の）交
差遅延係数（cross-lagged coefficients）である。交差遅延係数が相互関係の推測の核となる
母数であり，その絶対値が大きいほど対応する変数間の関係が強いことを意味する。 

CLPM では過去の情報である自己回帰項を統制することによって，単に異なる時点で測
定された変数間の相関関係（cross-lagged correlation）を超えた解釈が可能になる。例えば，
𝛾𝛾𝑥𝑥𝑥𝑥であれば，過去の𝑋𝑋の測定値𝑥𝑥𝑖𝑖(𝑡𝑡−1)を統制し（つまり，その値が同じと考えられる仮想的
な集団を想定し），過去の𝑌𝑌の測定値𝑦𝑦𝑖𝑖(𝑡𝑡−1)が一単位上昇したとき（𝑦𝑦𝑖𝑖(𝑡𝑡−1) ⇒ 𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 1）に
期待される現在の𝑥𝑥𝑖𝑖𝑖𝑖の増分を表す量となる。𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥および𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦は各回帰式の残差項であり，通
常では（平均が 0ベクトルの）二変量正規分布に従うことが仮定され，（時変的な）残差（共）
分散が推定される。最初の時点(𝑡𝑡 = 1)の測定値（𝑥𝑥𝑖𝑖1,𝑦𝑦𝑖𝑖1）については，他の変数の結果とは
ならない外生的な変数として扱い，これらの平均や（共）分散を仮定し推定する。 

(1) 式では，切片，自己回帰係数や交差遅延係数などの母数について時変的な量を仮定し 
ていることを反映して，添え字に𝑡𝑡がつく。これは，CLPM を適用する典型的な縦断研究で
は測定時点間の間隔が 1 か月や 1 年など長くなることは珍しくなく，そのため測定時点間
で変化のダイナミクスに質的な違いが生じている可能性があること，更には測定時点間の
間隔が必ずしも等間隔とは限らないことを反映している。勿論，時変的あるいは時不変的か
の設定はケースバイケースであり，実際に扱う変数の性質や測定期間，変化のダイナミクス
の時間的な安定性を調べることに主たる関心があるかといった研究仮説の種類，更には自
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由母数の数を減らしてより安定的に推定したいといった推定上の理由などを踏まえて，分
析者が主体的に決定していく事柄である。また，この点のモデル選択のために情報量規準の
ような汎用的な方法が利用できるが，CLPM が通常（多変量正規分布を仮定した）SEM を
通して推定されることから，種々のモデル適合度指標も参照できる（その基本的事項につい
ては，例えば豊田(1998)や Kline(2016)を参照のこと）。 
 CLPMは(1)式以外にも，下記のように，各時点の集団平均からの偏差を用いた別の形式
で表現されることがある（e.g., Hamaker et al., 2015）。 
 
                                                           𝑥𝑥𝑖𝑖𝑖𝑖 = µ𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑖𝑖𝑖𝑖∗ ,        𝑦𝑦𝑖𝑖𝑖𝑖 = µ𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑖𝑖𝑖𝑖∗                       (2𝑎𝑎) 

𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖(𝑡𝑡−1)
∗ + 𝛾𝛾𝑥𝑥𝑥𝑥𝑦𝑦𝑖𝑖(𝑡𝑡−1)

∗ + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥∗  
                                                           𝑦𝑦𝑖𝑖𝑖𝑖∗ = 𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑡𝑡−1)

∗ + 𝛾𝛾𝑦𝑦𝑦𝑦𝑥𝑥𝑖𝑖(𝑡𝑡−1)
∗ + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦∗                  (2𝑏𝑏) 

 
µ𝑥𝑥𝑥𝑥およびµ𝑦𝑦𝑦𝑦は時点𝑡𝑡における集団平均であり，𝑥𝑥𝑖𝑖𝑖𝑖∗および𝑦𝑦𝑖𝑖𝑖𝑖∗はそこからの個人𝑖𝑖の偏差である。
偏差の平均は 0 である。(2b)式では，偏差に対して(1)式のように自己回帰項・交差遅延項・
残差を設定しているが，偏差の平均が 0 であることを反映して，(1)式にあった切片項𝛼𝛼は
含まれない。つまり，(1)式と(2)式の違いは，各変数の平均構造を切片項𝛼𝛼で表現するか集
団平均µで表現するかの違いとも言い換えられ，µは𝛼𝛼を含む関数として表現できる（Usami, 
2021）。一方で，自己回帰係数・交差遅延係数・残差（共）分散は，このような式表現の違
いとは無関係に同じである。(2)式を用いた場合の CLPM のパス図を Figure 1a に示してい
る。これらの式の数理的な違いは些末であるが，後述するように，既存の統計モデル間の概
念的・数理的な意味での区別をする上で役立つ（e.g., Usami, Murayama et al., 2019）。 
RI-CLPMの表現 
 CLPM における交差遅延係数𝛾𝛾は，自己回帰項を統制したうえでの（例えば，𝛾𝛾𝑥𝑥𝑥𝑥であれ
ば，𝑥𝑥𝑖𝑖(𝑡𝑡−1)の値が同じである仮想的な集団を想定したときの）変数間の相互関係を反映する
量であった。それでは，この交差遅延係数は個人内関係としての相互関係を反映した量と考
えられるであろうか。自己回帰項の投入によって，集団における相関関係を超えた関係を表
現していると言えるが，それはあくまで「一時点前の値が同じである」下位集団の相関関係
というべきものであり，その意味で個人内関係を表す量とは言えない。つまり，個人間の異
質性を十分適切に統制しているとは多くの場合考えにくい。 
 Hamaker et al. (2015)は，時間的に安定した個人差を反映する成分としての特性因子を統
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制することが個人内関係の推測に必要である一方，CLPM ではこのような成分が考慮され
ていないことから CLPMが個人内関係を推測する方法として不適切であると批判した。そ
して，代替となりうる分析モデルとして RI-CLPM を提示した。 
 RI-CLPMでは，(2a)式に類似した以下の式によって測定値𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖を， 
 
                                                 𝑥𝑥𝑖𝑖𝑖𝑖 = µ𝑥𝑥𝑥𝑥 + 𝐼𝐼𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑖𝑖𝑖𝑖∗ ,        𝑦𝑦𝑖𝑖𝑖𝑖 = µ𝑦𝑦𝑦𝑦 + 𝐼𝐼𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑖𝑖𝑖𝑖∗                  (3𝑎𝑎) 
 
のようにまず分割する。CLPM 同様，µ𝑥𝑥𝑥𝑥およびµ𝑦𝑦𝑦𝑦は時点𝑡𝑡における集団平均である。そし
て𝐼𝐼𝑥𝑥𝑥𝑥および𝐼𝐼𝑦𝑦𝑦𝑦は，個人𝑖𝑖の時間的に安定した個人差を表す特性因子（stable trait factor）であ
り，これらの（共）分散を仮定し（通常，変量効果として）推定する。この因子間共分散が，
時間的に安定した個人間関係を反映する。𝑥𝑥𝑖𝑖𝑖𝑖∗および𝑦𝑦𝑖𝑖𝑖𝑖∗は個人𝑖𝑖の偏差であり，特性因子とは
無相関であると仮定する。 
特性因子と偏差の集団平均はともに 0 であり，これにより𝑥𝑥𝑖𝑖𝑖𝑖および𝑦𝑦𝑖𝑖𝑖𝑖の（特性因子で条

件づけた）期待値はµ𝑥𝑥𝑥𝑥 + 𝐼𝐼𝑥𝑥𝑥𝑥およびµ𝑦𝑦𝑦𝑦 + 𝐼𝐼𝑦𝑦𝑦𝑦となる。時不変的で安定した個人差としての特
性因子を統制することにより，RI-CLPM の𝑥𝑥𝑖𝑖𝑖𝑖∗および𝑦𝑦𝑖𝑖𝑖𝑖∗は，CLPM のような集団平均から
の偏差ではなく，各個人の期待値からの偏差，あるいは安定した個人間差とは無相関な個人
内変動（within-person variability）を表す量と解釈できる。後者の解釈は，(3a)式が測定値
の分散を個人間（特性因子）の分散と個人内（個人内変動）の分散に直交分解していること
を意味する。 
そしてあとは，𝑥𝑥𝑖𝑖𝑖𝑖∗および𝑦𝑦𝑖𝑖𝑖𝑖∗について， 

 
𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖(𝑡𝑡−1)

∗ + 𝛾𝛾𝑥𝑥𝑥𝑥𝑦𝑦𝑖𝑖(𝑡𝑡−1)
∗ + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥∗  

                                                           𝑦𝑦𝑖𝑖𝑖𝑖∗ = 𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑡𝑡−1)
∗ + 𝛾𝛾𝑦𝑦𝑦𝑦𝑥𝑥𝑖𝑖(𝑡𝑡−1)

∗ + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦∗                (3𝑏𝑏) 
 
のように表現する。形式上は(2b)式と類似しているが，CLPM とは異なり，個人内変動に
ついての回帰モデルを表す。したがって，例えば交差遅延係数𝛾𝛾𝑥𝑥𝑥𝑥は，（特性因子得点または
特性値𝐼𝐼𝑥𝑥𝑥𝑥を示す）ある個人の一時点前の個人内変動𝑥𝑥∗が𝑥𝑥𝑖𝑖(𝑡𝑡−1)

∗ であるときの，その個人の
𝑦𝑦𝑖𝑖(𝑡𝑡−1)
∗ が一単位上昇したときに期待される現在の𝑥𝑥𝑖𝑖𝑖𝑖∗の増分を表す量として解釈できる。 
RI-CLPM のパス図を Figure 1bに示す。RI-CLPMと CLPMの違いは，前者において特

性因子が含まれていることのみであるから，仮に特性因子の(共)分散が 0（すなわち，𝐼𝐼𝑥𝑥𝑥𝑥 =
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𝐼𝐼𝑦𝑦𝑦𝑦 = 0）である場合，両者は数理的に等しい。また RI-CLPM では，CLPMと同様，最初の
時点の個人内変動（𝑥𝑥𝑖𝑖1∗ , 𝑦𝑦𝑖𝑖1∗）については外生的な変数として扱い，これらの平均や（共）分
散を仮定し推定する。なお，集団平均，自己回帰係数，交差遅延係数などの母数について時
変的な量を仮定するか，或いは時不変的な量を仮定するか（さらには，一部の時点のみ等値
性を仮定するか）についての選択は，CLPM の場合と同様，実際に扱う変数の性質や測定
期間，研究仮説の種類などを踏まえて分析者が主体的に決定する事柄であり，モデル選択が
必要な際は適合度指標や情報量規準などが利用できる。 
推定結果の比較と分析例 
実際のデータ発生プロセス（data generating process）が RI-CLPMに対応していて特性

因子の分散が 0 でない場合，仮に CLPM を用いてデータを分析すると交差遅延係数をはじ
めとした推定結果が RI-CLPM と比べて大きく変わりうる。特に特性因子の（共）分散が大
きいほど，交差遅延係数の推定値の統計的有意性や大きさ，符号がモデル間で異なる可能性
が高くなり，同時に RI-CLPM の方が適合度は高いと判定される可能性が高くなる。経験的
に推定結果が異なることを示した事例は Hamaker et al. (2015)や Usami, Murayama et al. 
(2019), Usami, Todo et al. (2019), Orth et al. (2021)をはじめ数多く報告されている。 
より具体的には，これらの研究でも示されているように，特性因子で統制した後の個人内

関係を見ているのが RI-CLPM であることを反映して，RI-CLPMで推定される自己回帰係
数はより小さく，また自己回帰係数や交差遅延係数の標準誤差はより大きくなる傾向にあ
る（Mulder & Hamaker, 2020）。一般に，異なる統計モデルを適用すれば異なった推定結果
が得られることは自明である。しかし，安定した個人差を反映する特性因子（例えば 𝐼𝐼𝑥𝑥𝑥𝑥）
は対応する変数（𝑋𝑋）の分散共分散構造の各要素に対して等しい大きさ（具体的には，特性
因子の分散 𝑉𝑉(𝐼𝐼𝑥𝑥𝑥𝑥)）だけ寄与することを反映して，母数全体の推定結果に及ぼす影響が大き
い。 
 後述するモデル選択に関わる議論の準備も兼ねて，推定結果の比較を目的とした簡単な
分析例を示す。Table 1は，Minnesota Adolescent Community Cohort (MACC)で収集され
た，青年期にある子どもが感じる映画を通した喫煙への曝露の程度(𝑋𝑋)と実際の喫煙強度
(𝑌𝑌)に関する縦断データ（𝑇𝑇 = 6,𝑁𝑁 = 4,671）にCLPMとRI-CLPM（や後述する他の統計モ
デル）を適用した分析結果である。推定には，Rのlavaanパッケージ（Rosseel, 2012）を用
いたSEMの最尤推定法（ML-SEM）を利用している。分析コードについては著者のホーム
ぺージ(http://usami-lab.com/Usami_2022_jsdp_code.docx)にて公開している。なお，
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Usami, Murayama et al. (2019)でも同一のデータを用いて様々な統計モデルの結果を比較
しているが，ここでは後の議論との関係から，CLPMやRI-CLPMなど一部のモデルにのみ
焦点を当て，また自己回帰係数・交差遅延係数・残差（共）分散について時変的または時
不変的な仮定の下でそれぞれ分析した結果を示している。ただしRI-CLPMの時不変条件で
は不適解が発生したため，比較の便宜から，残差（共）分散には等値制約の下で時不変的
に扱っている。不適解の対処については後述する。データの詳細については，Choi, 
Forster, Erickson, Lazovich, & Southwell (2012)やUsami, Murayama et al. (2019)を参照さ
れたい。 
 推定結果を見ると，時変的か時不変的な仮定かの違いに拠らず，CLPM と RI-CLPM の
間で交差遅延係数の推定値や統計的有意性および符号が異なることが分かる。そして，自己
回帰係数についても RI-CLPM の方が全体的に推定値は小さくなり，またこれら係数の推
定値の標準誤差は RI-CLPM の方が概して大きい。一方，モデルの適合度は RI-CLPM の方
が概して良い値を示している。他の統計モデルを適用した場合の結果については後述する。 
 

RI-CLPMの適用における実際的な話題 
 
必要な測定時点数  

CLPM と RI-CLPM のいずれも通常は SEMの枠組みで，すなわちモデルの平均構造およ
び分散共分散構造を実際の観測データの平均（ベクトル）・分散共分散行列に近づけること
を基本に最適化関数が設定され解が推定される。SEM の最適化に関する基礎的事項は
Bollen(1989)や豊田(1998)が，また推定の詳細については豊田(1992, 2012)が詳しい。 
モデルが識別される，すなわち一通りの解が得られるための必要条件として，CLPM で

は𝑇𝑇 = 2以上の縦断データが必要になる。一方 RI-CLPMでは特性因子を導入し，その分散・
共分散を（変量効果として）推定する結果，母数の数が 3つ増える。このことを反映して，
RI-CLPM では𝑇𝑇 = 3以上の縦断データが必要になる。これらの違いは，自己回帰係数や交
差遅延係数などの母数について時変的な量を仮定するか否かに関係なく生じる。 
 一方で，Usami, Todo et al. (2019)が心理学を含む医学領域の国際学術誌を対象に行った
文献調査によると，相互関係に関する推定結果を示した 270 件の研究のうち，106 件(= 
39%) が 𝑇𝑇 = 2，89 件(= 33%)が𝑇𝑇 = 3，36 件(= 13%)が𝑇𝑇 = 4，16 件 (= 6%)が𝑇𝑇 = 5の縦
断データを用いており，𝑇𝑇 ≧ 6の縦断データは 24 件 (= 9%)に留まっていた。2012 年に発
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表された心理学領域の論文を対象に類似の検討を行った Hamaker et al. (2015)では，CLPM
を適用した 115 件の論文のうち半数近くの 45％が𝑇𝑇 = 2の縦断データを用いていたことが
報告されている。これは，Usami, Todo et al. (2019)の結果とも概ね整合的である。 
上述のように，Hamaker et al. (2015)の批判を受けて RI-CLPMの適用を視野に入れた分

析結果の比較検討や二次分析の動きが加速しているが，𝑇𝑇 = 2の縦断データに対しては RI-
CLPM の適用自体が基本的にできない。したがって，RI-CLPMに基づく個人内関係の推測
を実現するには，まず𝑇𝑇 = 3以上の縦断データを収集することを前提とした研究デザインの
設計が必要である。また，他の条件が同じであれば，測定時点数が多いほど，特性因子の（共）
分散を中心としたモデル内の母数もより安定して推定できることが期待される。ただし，一
般的な事柄として，自己回帰係数や交差遅延係数の大きさは測定時点間の間隔（ラグ）の長
さに依存するため（e.g., Dormann & Griffin, 2015），実際のラグや測定時点数は，研究仮説
や測定期間も踏まえて検討する必要がある。 
特性因子の分散に関する指標 
上述のように，(3a)式で特性因子と偏差（個人内変動）は無相関であることから，各時点

の分散（例えば変数𝑌𝑌の分散 𝑉𝑉(𝑦𝑦𝑖𝑖𝑖𝑖)）は特性因子の分散（個人間分散： 𝑉𝑉(𝐼𝐼𝑦𝑦𝑦𝑦)）と個人内変動
の分散（個人内分散：𝑉𝑉(𝑦𝑦𝑖𝑖𝑖𝑖∗ )）の和として直交分解できる。個人内関係の推測においては交
差遅延係数の推定値の大きさ 3)や統計的有意性，符号，標準誤差（信頼区間），更には各回
帰式の決定係数などが主要な関心となるが，他にも，時点𝑡𝑡の測定値の分散に対する特性因
子の分散の割合： 
 

                                       𝑅𝑅𝑦𝑦𝑦𝑦2 =
 𝑉𝑉(𝐼𝐼𝑦𝑦𝑦𝑦)
 𝑉𝑉(𝑦𝑦𝑖𝑖𝑖𝑖)

=
 𝑉𝑉(𝐼𝐼𝑦𝑦𝑦𝑦)

 𝑉𝑉(𝐼𝐼𝑦𝑦𝑦𝑦) + 𝑉𝑉(𝑦𝑦𝑖𝑖𝑖𝑖∗ )                        (4) 

 
も参考になる指標であろう。例として，𝑅𝑅𝑦𝑦𝑦𝑦2 = 0.1, 0.9および𝛽𝛽𝑦𝑦𝑦𝑦=0.2, 0.7別に見たときの𝑌𝑌の
軌跡の例をプロットしたもの(𝑁𝑁 = 10,𝑇𝑇 = 20)が Figure 2 である。𝑅𝑅𝑦𝑦𝑦𝑦2 が大きいほど個人間
分散の割合が各時点で大きく，各個人の軌跡が互いに分離している程度が顕著になる。また，
このときには結果として CLPM と RI-CLPM の間で自己回帰係数などの母数の推定結果も
大きく異なる可能性が高い。一方，𝑅𝑅𝑦𝑦𝑦𝑦2 が小さいほど個人内分散の割合が逆に大きくなり，
結果として各個人の軌跡が近づき重なり合う様子が顕著になる。また𝛽𝛽𝑦𝑦𝑦𝑦が小さい場合，あ
る時点での個人内変動の大きさが過去のそれに強く依存せず推移するため（つまり，自己記
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憶性が弱く値が安定しないため），結果として集団内の測定値の順位変動が生じやすくなり
各個人の軌跡がより頻繁に重なるようになる。このことは，個人内分散が大きくなる𝑅𝑅𝑦𝑦𝑦𝑦2 が
小さい条件において顕著である。 
𝑅𝑅𝑦𝑦𝑦𝑦2 の大きさは，実際に扱う変数の性質や測定デザイン（e.g., 測定期間），更には測定方

法（e.g., 測定の信頼性）などに依存すると考えられる。程度の差は勿論あるが，実際の縦
断データにおいては，安定して相対的に高い測定値を示す個人もいれば，逆に低い値を示す
個人もいることを想定するのは自然な場合が多いであろう。これは，時間的に安定した個人
差としての特性因子の分散が 0 でないことを示唆する。実際に，RI-CLPMを適用した研究
では，Table 1のように無視できない大きさの分散が推定されることが少なくなく，このと
きには CLPM と RI-CLPM の間で交差遅延係数などの推定結果が大きく異なる可能性は高
くなる。 
他にもUsami (2022)では，思春期の子どもの精神・身体的発達を調査するために行われ

た東京ティーンコホート研究（Tokyo Teen Cohort; プロトコル論文として，Ando et al., 
2019）において測定された抑うつ症状（SMFQ スコア），睡眠時間，就寝時間，BMI（body 
mass index）の縦断データ(𝑇𝑇 = 3)を用いて，最初の時点（𝑡𝑡 = 1: 10 歳時）における各変数
の分散に対する特性因子の分散の割合（𝑅𝑅12）について，順に𝑅𝑅12 =0.245, 0.545, 0.482, 0.748
という推定結果を報告している。つまり，抑うつの個人内変動（個人内分散）は他の変数に
比べて大きく，一方で生活習慣としての睡眠時間・就寝時間，また特に身体組成である BMI
の測定値は安定した個人差の影響が大きく𝑅𝑅12が相対的に大きくなる傾向が見られた。 
RI-CLPMの幾つかの拡張  
変数の効果がより長期に及ぶと考えられる場合には，一次だけではなく二次以上の自己

回帰項・交差遅延項（e.g., 𝑥𝑥𝑖𝑖(𝑡𝑡−2)
∗ から𝑥𝑥𝑖𝑖𝑖𝑖∗および𝑦𝑦𝑖𝑖𝑖𝑖∗への効果）を仮定することが考えられる。 

このような効果が実際にある場合，交絡への対処としても，例えば一次のラグ付き変数から
の因果効果をより正確に推定でき，更にはモデルの適合度が高くなることも期待できる。 
他にも，時変的な交絡変数(𝑧𝑧𝑖𝑖𝑖𝑖 )を投入する場合のモデル表現の一つとして，変数間の線形

的な関係を仮定して，(3a)と(3b)式を単純に 3つの変数𝑋𝑋,𝑌𝑌,𝑍𝑍の場合に拡張することが挙げ
られる。このようなモデルにおいて変数𝑍𝑍が媒介変数として投入されている場合，変数間の
線形性の仮定や必要な交絡変数を統制しているという仮定の下で，例えば𝑥𝑥1∗ ⇒ 𝑧𝑧2∗ ⇒ 𝑦𝑦3∗の系
列を通した（実際に検討されることが多い集団における相関関係ではなく，各変数の特性因
子を統制した個人内関係に基づく）媒介効果が推定できる。 



14 
 

 更に別の RI-CLPM の拡張として，Mulder & Hamaker (2020)は，(a)時不変的な観測変
数がある場合，(b)多母集団モデルに拡張する場合，(c)多重指標（multiple indicators）を扱
う場合（例えば，抑うつなどの構成概念が複数の尺度項目を通して縦断的に測定されるよう
な場合に合計点ではなく，各項目単位の測定モデルを設定する）について，複数の具体的な
モデル表現を図示しながら説明している。 
特性因子と個人内変動の相関の仮定 
 RI-CLPMでは，安定した個人間差としての特性因子と個人内変動の間は無相関と仮定さ
れた。その理由の背景には，（特性因子の関数である）各個人の期待値からの一時的な変動
分として位置付けられる個人内変動が特性因子と相関があると仮定する理由はない（Usami, 
Murayama et al., 2019）といったモデルの設計思想がある。それでも Figure 1cのように相
関を仮定すること自体は手続き上可能であり，具体的には𝑇𝑇 = 4以上のデータであれば，係
数や残差（共）分散の時不変性の仮定の有無に関係なく識別できる。 
ただし，この設定により特性因子が測定値の分散に及ぼす寄与の大きさは時点間で変化

する。結果として，時間的に安定した個人差としての特性因子の概念的な意味も変化する。
関連して，測定値の分散が特性因子と個人内変動の分散に直交分割されないことから，上述
した𝑅𝑅𝑦𝑦𝑦𝑦2 の形で定義されるような指標値を報告する意義は薄くなる。このような難点が生じ
ることからも示唆されるように，本来の意図からすれば，特性因子と個人内変動の間の相関
を仮定したモデル設定はもはや厳密には RI-CLPM とは呼べない。一方でこのようなモデ
ル設定は，後述する動学的パネルモデル（DPM：Figure 1d）との数理的関係性を繋ぐ重要
な接点になる（Andersen, 2022）。 
測定誤差の仮定と不適解の問題  

Hamaker et al. (2015)以前から知られている，RI-CLPM と数理的に極めて近い統計モデ
ルとして，パーソナリティ研究で提案された安定特性・自己回帰特性状態モデル（stable trait 
autoregressive trait and state model: STARTS, Kenny & Zautra, 1995, 2001）がある 4) 。
STARTSでは測定値（𝑥𝑥𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖）を，真値（𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 ,𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦; true value）およびそれとは無相関な測定
誤差（𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥, 𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦; measurement error）に分割して， 
 

                                              𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥 ,             𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦                  (5𝑎𝑎) 
 
と表現する。測定誤差の平均は 0であり，したがって測定値の平均は真値の平均に等しい。
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また，各時点の測定誤差は二変量正規分布に従うことが通常仮定され，誤差（共）分散が推
定される。ただし識別上の制約から，時不変的な誤差（共）分散が通常仮定される。 
そして，これら真値に対して，RI-CLPM のように各時点の集団平均，特性因子，偏差（個

人内変動）に分割し，さらに偏差に対する回帰式を設定する。すなわち， 
 

                                                 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 = µ𝑥𝑥𝑥𝑥 + 𝐼𝐼𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥∗ ,        𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 = µ𝑦𝑦𝑦𝑦 + 𝐼𝐼𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦∗               (5𝑏𝑏) 
𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥∗ = 𝛽𝛽𝑥𝑥𝑥𝑥𝑓𝑓𝑥𝑥𝑥𝑥(𝑡𝑡−1)

∗ + 𝛾𝛾𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦(𝑡𝑡−1)
∗ + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥∗  

                                                        𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦∗ = 𝛽𝛽𝑦𝑦𝑦𝑦𝑓𝑓𝑦𝑦𝑦𝑦(𝑡𝑡−1)
∗ + 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓𝑥𝑥𝑥𝑥(𝑡𝑡−1)

∗ + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦∗                 (5𝑐𝑐) 
 
となる。 
 測定値か真値に対する式かの違いはあるが，(5b)と(5c)式の設定は基本的に RI-CLPM
（(3a),(3b)式）と同じである。なお STARTSでは，例えば特性因子，個人内変動（STARTS
で言う「自己回帰特性」に対応），測定誤差（同様の「状態」に対応）の各成分の分散が時
不変であるという意味での定常性 5)（stationarity）が満たされるように，母数について適当
な非線形制約を課すことが多い（Donnellan, Kenny, Trzesniewski, Lucas, & Conger, 2012）。
一方，このような制約は(RI-)CLPMでは通常課されない。 
（発達）心理学研究では直接観測できない構成概念の測定が頻繁に試みられるが，測定方

法を主たる原因として測定の信頼性が完全でなく，測定誤差を伴ってデータが得られてい
る場合が少なくない。その際には，（特に最初の時点で）測定誤差を直接考慮していない RI-
CLPM に基づく母数の推定値にはバイアスが生じることになる。 
概念的な意味付けに違いはあるものの STARTS は RI-CLPM 以前に提案され，且つより

一般的な表現を与えていた一方で，近年急速に普及したのは RI-CLPM であることは少々
皮肉にも感じられる。ただし STARTS では，測定誤差を導入することの「代償」として，
特性因子の分散や残差・誤差分散の推定値が負になることや，特性因子に関する分散共分散
行列が正定値にならないといった不適解が生じやすいことが経験的に知られている（e.g., 
Hamaker et al., 2015; Usami, Murayama et al., 2019; Usami, Todo et al., 2019; Orth et al., 
2021)。この点の対処としては，測定時点数を増やすことや多重指標を利用すること（Cole, 
Martin, & Steiger, 2005; Luhmann, Schimmack, & Eid, 2011)，他にも母数の値に関する事前
分布を設定の上ベイズ推定を実行すること（Lüdtke, Robitzsch, & Wagner, 2018）が挙げら
れる。なお，RI-CLPMでも，さきの分析例のように不適解がしばしば生じることが経験的
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に知られているが，その発生頻度は STARTS の方が多い（e.g., Usami, Todo et al., 2019）。 
 また，モデルの識別の観点からも STARTS は RI-CLPM よりも若干の制約を伴う。
STARTSでは，母数がより多く複雑に構造化された統計モデルであることから，𝑇𝑇 = 4以上
の縦断データが識別のために必要となる。一方，自己回帰係数・交差遅延係数・残差（共）
分散の時不変性を仮定した場合では𝑇𝑇 = 3のデータでも識別可能である。ただし不適解を避
け，より安定した母数の推定を目指す場合は𝑇𝑇 = 10程度のデータが必要と考えられるが
（Kenny & Zautra, 2001），上述のようにこのような規模の縦断データを実際に収集してい
る事例は限られている（Usami, Todo et al., 2019）。 
 

その他の統計モデルと RI-CLPM との関係 
 
個人内変化のプロセスとしての相互関係を調べるために利用可能な統計モデルは

STARTSを含め他にも数多く存在し，Hamaker et al. (2015)以後に提案されたものも存在す
る。これらのモデルは心理学や周辺の研究領域で提案され SEMを通して推定されるが，経
済学など他の領域に目を向ければさらに別の選択肢も存在する。この事実は潜在的な交絡
変数，更には個人間の異質性を表現し統制する方法が多様であることを意味する。 

RI-CLPM は少なくとも CLPM と比較すれば，個人内関係を推測する目的からしてより
妥当なモデル表現を与えていると考えられるが，これら多くの既存の統計モデルが存在す
る中で，RI-CLPM の適用は常に正当化されるのだろうか。そうだとすればそれはなぜだろ
うか。関連して，安定的な個人差としての特性因子を統制するということは因果推論の観点
から見てどのような意義をもつのだろうか。Hamaker et al. (2015)ではこれらについて必ず
しも十分に議論がなされていなかった。 
著者自身の研究（Usami, Murayama et al., 2019; Usami, 2021）では，幾つかの統計モデ

ルを比較してそれらの概念的または数理的関係性を整理するための統合的枠組（unified 
framework）を示して，それを基に交差遅延係数の解釈の違いを考察している。そして，RI-
CLPM を個人内関係の推測のための一つの有効な方法として位置付けている。しかし，統
計モデルの種類の多さやそれらの間の複雑な数理的関係性を一因として，特に因果推論を
踏まえたモデル選択のあり方や推定の方法論等を巡る議論は今なお進行中である。このよ
うに，個人内関係としての相互関係の推測に関する話題は複雑多様化している。CLPM と
RI-CLPM の比較に限って言っても，現在，（2 次以上のラグを含んだ）CLPM の有用性を
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主張する見解もあれば（Lüdtke & Robitzsch, 2021），逆に Hamaker et al. (2015)と同様に
CLPM に対して改めて批判的な検討を加えた論文もある（Lucas, 2022）。 
議論が複雑化する他の重要な理由として，実際のデータ発生プロセスや真のモデルが一

般に研究者にとって不明な中で，特性因子のような統計モデル内の共通因子が潜在的な交
絡変数（更には，個人間の異質性）を適切に統制しているかどうかの判断が難しいことが挙
げられる。そのことが，個人内関係を推測する上での最良のモデル選択や交差遅延係数の解
釈のあり方に関して一義的な結論を導くのを困難にしている。 
 本節では，RI-CLPM を個人内関係の推測のための一つの有効な方法とみる立場から，著
者自身の研究（Usami, Murayama et al., 2019; Usami, 2021, 2022）を含めた最近の議論を踏
まえながら，(1)これまでに心理学や周辺領域で提案された，SEM の枠組で扱われる幾つか
の統計モデル（LCM-SR, LCS, GCLM）の概要と推測上生じうる問題点，(2)経済学を中心
に利用されている動学的パネルモデル（DPM）の概要と RI-CLPMとの数理的関係，(3)RI-
CLPM における特性因子の因果推論上の役割とモデル選択，の 3 点について説明する。特
に，RI-CLPM の特性因子は個人内変動とは無相関な量と仮定している点に個人間の異質性
を表現する上での特色があり，またそれが DPM との関係性を繋ぐ重要な接点にもなるこ
とを指摘する。 
既存の統計モデルの概要と問題点 

LCM-SR 特性因子の点以外に，RI-CLPM と STARTS で共通しているのは，集団或い
は個人の変化の軌跡のモデリングに重きを置いていないという点である。実際，集団平均は
µ𝑥𝑥𝑥𝑥,  µ𝑦𝑦𝑦𝑦で表現され，平均構造は（時点間の等値制約などの仮定を課さない限りは）データ
に常に完全に適合する。特性因子で条件づけた個人の期待値もµ𝑥𝑥𝑥𝑥 + 𝐼𝐼𝑥𝑥𝑥𝑥 ,  µ𝑦𝑦𝑦𝑦 + 𝐼𝐼𝑦𝑦𝑦𝑦で表現され，
各個人と集団の軌跡は互いに平行であり，軌跡の形状やその個人差を何らかの関数により
構造化して表現するようなことは意図していない。言い換えれば，2 つのモデルの違いは，
平均構造ではなく共分散構造の違いによって特徴づけられることになる。 
一方，縦断データを用いた記述的研究では変化の軌跡の平均像や個人差を知ることが主

要な関心事となる。この観点から，因子分析を一つの系譜として心理統計学の中で生まれた
方法が潜在成長モデル(LCM)である。そして LCM のように（成長因子と呼ばれる）共通因
子を用いて軌跡の平均像や個人差を要約的に表現しながらも，CLPMのように自己回帰項・
交差遅延項を通して変数間の相互関係の推測も同時に行うための融合的な統計モデルの提
案が，主に 2000 年代に入ってから見られるようになった。 
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構造化された残差を伴う潜在成長モデル（LCM with structured residuals: LCM-SR; 
Curran, Howard, Bainter, Lane, & McGinley, 2013, または Chi & Reinsel, 1989）はそのよ
うな統計モデルの一つであり，個人内関係の推測を意図して提案されている。LCM-SRは，
変化の軌跡を記述する部分と自己回帰項・交差遅延項を含む回帰式とを分離した表現をも
つ。具体的に，線形的な変化の軌跡を仮定した LCM-SRでは，測定値𝑥𝑥𝑖𝑖𝑖𝑖および𝑦𝑦𝑖𝑖𝑖𝑖を LCM
に倣って， 
 

𝑥𝑥𝑖𝑖𝑖𝑖 =𝐼𝐼𝑥𝑥𝑥𝑥 + (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑖𝑖𝑖𝑖∗      
                                                                𝑦𝑦𝑖𝑖𝑖𝑖 =𝐼𝐼𝑦𝑦𝑦𝑦 + (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑖𝑖𝑖𝑖∗                         (6𝑎𝑎) 

 
と表現する。ここで𝐼𝐼𝑥𝑥𝑥𝑥および𝐼𝐼𝑦𝑦𝑦𝑦は個人𝑖𝑖の軌跡の切片，より具体的には最初の時点（𝑡𝑡＝1）
における真値の大きさを反映する切片因子（intercept factor）である。𝑆𝑆𝑥𝑥𝑥𝑥および𝑆𝑆𝑦𝑦𝑦𝑦は個人𝑖𝑖
の軌跡の傾きの大きさを表す傾き因子（slope factor）である。特性因子とは異なり，これら
二つの因子については平均を 0 と固定せずに推定する。また，これらの因子の（共）分散も
推定する。もし共分散が正の場合，最初の時点の真値（=切片）が大きいほどその後の変化
量（=傾き）も大きいといった関係を意味する。LCM の文脈では，切片因子および傾き因
子はまとめて成長因子（growth factor）と呼ばれることがある。 
 𝑥𝑥𝑖𝑖𝑖𝑖∗および𝑦𝑦𝑖𝑖𝑖𝑖∗は残差項（または，これまでの表現と対応させると偏差）であり，測定値か
ら線形で表現される傾向（トレンド: trend）成分を除去（detrend）した量とも言い換えら
れる。残差項は，𝑡𝑡 ≧ 2において(RI-)CLPM と同様に， 
 

𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖(𝑡𝑡−1)
∗ + 𝛾𝛾𝑥𝑥𝑥𝑥𝑦𝑦𝑖𝑖(𝑡𝑡−1)

∗ + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥∗  
                                                           𝑦𝑦𝑖𝑖𝑖𝑖∗ = 𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑡𝑡−1)

∗ + 𝛾𝛾𝑦𝑦𝑦𝑦𝑥𝑥𝑖𝑖(𝑡𝑡−1)
∗ + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦∗                (6𝑏𝑏) 

 
のようなラグ付き変数を伴う回帰式で表現される。また，𝑥𝑥𝑖𝑖1∗および𝑦𝑦𝑖𝑖1∗は外生変数としてそ
の（共）分散が推定され，さらに成長因子とは無相関であると仮定される。これは，RI-CLPM
に類似して，LCM-SR が軌跡とは無相関で分離された残差項を用いて個人内関係を捉えよ
うとする意図を反映している。なお，回帰式右辺の自己回帰係数・交差遅延係数・残差（共）
分散について時変的な値を仮定した場合，モデルの識別のためには𝑇𝑇 = 4以上の縦断データ
が必要である。 
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LCM-SR は個人内関係を推測する目的に適っているように思われるかもしれない。しか
し，(6b)式で表現されている個人内関係は，成長因子によって個人の変化の軌跡が統制され
た「後」の残差（𝑥𝑥𝑖𝑖𝑖𝑖∗および𝑦𝑦𝑖𝑖𝑖𝑖∗）の関係性である。特に，相互関係の主要な構成要素である時
点間の個人内変化やその個人差を反映する傾き因子𝑆𝑆を統制してしまっては，本来見たい個
人内関係が歪められている可能性が高いだろう。これは因果推論における過剰調整（over-
adjustment）を意味している。個人内関係の推測に不要とされる量（=傾き因子得点𝑆𝑆）を統
制し除去しようと意図しながらも推測に必要な量（=個人内変化やその個人差を反映する成
分）までも不当に排除していることを意味しており，このことを Usami, Murayama et al. 
(2019)では慣用表現を用いて”throwing the baby out with the bathwater”と指摘している。 
また，仮に傾き因子を(6b)式から分離することの正当性が主張できる場合であっても，軌

跡の形状（e.g., 線形）を正しく設定する必要があることは LCM-SRの適用上の限界になり
うる。つまり，モデルの誤設定が生じ，実際の軌跡の形状を正確に記述できずその推定にバ
イアスが生じれば，それは個人内関係の推測の核となる交差遅延係数へのバイアスとして
伝播する。 
 このような理由から通常，個人内関係の推測を目的とした場合に，LCM-SR に対する RI-
CLPM の優位性が認められると考えるのが著者の立場である。しかし上述のように，実際
のデータ発生プロセスや真のモデルは不明である。もし，(𝑡𝑡 − 1)𝑆𝑆の項が関心のある相互関
係の主要な構成要素を反映せず，むしろ観測されない諸々の交絡要因を反映した時変的な
交絡変数として機能しているのであれば，LCM-SR の利用は正当化される（Usami, 
Murayama et al., 2019）。また，このとき RI-CLPM で表現されている個人内関係は，この
ような時変的な交絡変数を統制できていないため因果関係を反映するものとは言えないこ
とは明らかである。ただし，実際の時変的な交絡変数の影響がこのような単純化した関数で
表現できるのは稀なことのように思われる。 

LCS 潜在変化得点モデル（latent change score model: LCS，または潜在差得点モデル
latent difference score model）は LCM-SR と同様，LCMと CLPMの融合的な拡張を与え
ることを一つのモチベーションとして McArdle & Hamagami (2001) によって提案された。
LCM-SR とは異なり，個人内関係の推測を明確に意図して提案されたモデルでは元々ない
が，自己回帰項と交差遅延項を含み変数間の相互関係を調べる目的でしばしば利用される。 

LCS の本来の表現では，そのモデル名からも分かるように，（真値の）時点間の変化量
（𝛥𝛥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑓𝑓𝑥𝑥𝑥𝑥(𝑡𝑡−1)）を明示的に導入しそれについての回帰式を設定する。しかしUsami, 
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Hayes & McArdle (2015, 2016)やUsami, Murayama et al. (2019)にもあるように，この変化
量を用いない形でも数理的に同値の表現が与えられるため，他の統計モデルとの比較の観
点から以下では変化量を用いない表現に基づいて説明する。 
さて，LCS では STARTS同様， 

 
                                              𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥 ,             𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦                  (7𝑎𝑎) 

 
のように測定値を真値𝑓𝑓と測定誤差𝜀𝜀に分解する。識別上の理由から，時不変的な誤差 
（共）分散が通常仮定される。そして，これまでに説明した統計モデルとは異なり， 
 

𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐴𝐴𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑓𝑓𝑥𝑥𝑥𝑥(𝑡𝑡−1) + 𝛾𝛾𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦(𝑡𝑡−1) + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥 
                                                 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐴𝐴𝑦𝑦𝑦𝑦 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑓𝑓𝑦𝑦𝑦𝑦(𝑡𝑡−1) + 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓𝑥𝑥𝑥𝑥(𝑡𝑡−1) + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦                                        (7𝑏𝑏) 

 
のように，偏差ではなく真値に対して自己回帰項・交差遅延項を含む回帰式を直接設定し，
また共通因子𝐴𝐴もこの式中に含まれている。後述する測定値に関しての尺度不変性のため，
LCS では時不変的な自己回帰係数や交差遅延係数が通常仮定されるが，ここではモデルの
比較の観点から時変的な係数を仮定している。さらに LCS では比較的頻繁に不適解が発生
することから，それを避ける意図で残差（共）分散を 0（つまり，𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦 = 0）とするよ
うな強い仮定をおくことがある。自己回帰係数・交差遅延係数・残差（共）分散について時
変的な値を仮定した場合，モデルの識別のためには𝑇𝑇 = 4以上の縦断データが必要である。 
共通因子𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑦𝑦𝑦𝑦は，回帰式のランダム切片であり個人𝑖𝑖の時点間の変化量に関わる（e.g., 

Usami et al., 2015）。同じ「切片」ではあるが，𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑦𝑦𝑦𝑦は自己回帰項・交差遅延項とともに
式中に含まれていることから LCM-SRの成長因子（𝐼𝐼𝑥𝑥𝑥𝑥 , 𝐼𝐼𝑦𝑦𝑦𝑦）とは等価でない。一方，𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑦𝑦𝑦𝑦
の平均は 0 と固定せず，平均・（共）分散を推定するという点は成長因子と同様である。そ
して，最初の時点の真値（𝑓𝑓𝑥𝑥𝑥𝑥1, 𝑓𝑓𝑦𝑦𝑦𝑦1）は外生的な変数として扱い，これらの平均や（共）分
散を推定する。加えて，これらの真値と共通因子𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑦𝑦𝑦𝑦の間にも相関（共分散）を仮定し推
定する。この相関の仮定は，RI-CLPM または STARTS における特性因子と偏差（個人内
変動）の間，或いは LCM-SR における成長因子と偏差（個人内変動）の間が無相関である
とした仮定と対照的である。 
 共通因子𝐴𝐴は特性因子𝐼𝐼とどのように違うのだろうか。本稿の主眼は RI-CLPM にあるが，



21 
 

それと STARTS との数理的な違いは測定誤差の仮定の有無だけであるので，共にそれを仮
定している LCSと STARTS をここで比較しよう。測定誤差以外にも，モデル内に含まれる
共通因子の種類が 1 つ（𝐼𝐼または𝐴𝐴）という点もこれらのモデル間で共通している。共通因子
𝐴𝐴は，特性因子𝐼𝐼（同様に，LCM-SRの成長因子）とは異なり，自己回帰項・交差遅延項とと
もに回帰式中に含まれていた。この違いは，各共通因子が真値（または測定値）にどのよう
に寄与しているのかに関わってくる。STARTSでは(5b)式にあるように，例えば𝐼𝐼𝑥𝑥𝑥𝑥 ⇒ 𝑓𝑓𝑥𝑥3の
形で，各時点の真値に対する直接効果としてのみ特性因子が寄与する。また，その効果の大
きさは𝐼𝐼𝑥𝑥𝑥𝑥または𝐼𝐼𝑦𝑦𝑦𝑦であり時点間で同じである。このような性質は LCM-SR における成長因
子も同じである（そのため，切片因子と特性因子は同じ𝐼𝐼の記号を用いている）。 
一方，LCS の共通因子𝐴𝐴について，例えば𝐴𝐴𝑥𝑥から𝑓𝑓𝑥𝑥3への寄与を考えたとき，(7b)式の再

帰的な関係に注意すると，𝐴𝐴𝑥𝑥 ⇒ 𝑓𝑓𝑥𝑥3のような直接効果のみならず，（自己回帰項を通して）
𝐴𝐴𝑥𝑥 ⇒ 𝑓𝑓𝑥𝑥2 ⇒ 𝑓𝑓𝑥𝑥3のような間接効果も存在することが分かる。さらに，（交差遅延項を通して）
𝐴𝐴𝑥𝑥 ⇒ 𝑓𝑓𝑥𝑥2 ⇒ 𝑓𝑓𝑦𝑦3のように異なる変数（𝑌𝑌）にまで影響するという点も特性因子𝐼𝐼とは異なる。 
このことをより一般的に考えると，共通因子𝐴𝐴𝑥𝑥の𝑓𝑓𝑥𝑥𝑡𝑡への影響は，自己回帰項を通して次

の時点の𝑓𝑓𝑥𝑥(𝑡𝑡+1)へ波及し，そしてさらに𝑓𝑓𝑥𝑥(𝑡𝑡+2)へと波及していく。このようにして，𝐴𝐴𝑥𝑥のあ
る時点の真値（または測定値）への寄与が後続の時点に累積していく。その結果，特性因子
とは異なり，𝐴𝐴𝑥𝑥の寄与の大きさは各時点で異なる。Usami, Murayama et al. (2019)ではこの
ような性質をもつ共通因子を，特性因子と区別する目的で累積因子（accumulating factor）
と呼んだ。この違いを反映して，STARTS と LCSは互いに異なる共分散構造を有し，そし
て交差遅延係数についても異なる推定結果を与える。なお，後述する（LCS と同様に累積
因子を含む）動学的パネルモデル（DPM: Figure 1d）と RI-CLPMのパス図(Figure 1b)を
比較すると上述の累積因子に関する特徴がより明確になる。 
 このような累積因子と特性因子の違いは，統制している個人間の異質性についての数理
的・概念的な違いを意味し，(7b)式は RI-CLPMと等価な個人内関係を表す式とは考えられ
ない。寄与の大きさが時変的であることから，累積因子で統制しているのは（特性因子のよ
うな）時間的に安定した特性とは言えない。寄与が時変的であること自体は柔軟で魅力的で
ある一方で，実際の縦断データにおける（時不変的な）交絡変数の影響が(7b)式のような比
較的に単純化した関数を通して適切に表現できているかの判断は難しい問題と思われる。 
さらに重要なのは，LCS では母数についての時不変的な制約を課さない限り尺度不変性

を満たさないという点である。つまり，測定値を線形変換すると累積因子の平均だけでなく，
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自己回帰係数・交差遅延係数の推定値やモデルの適合度も変わってしまう。これは，LCSの
自己回帰係数・交差遅延係数が変化の軌跡（平均構造）から分離されていないことを意味す
る。一方，尺度不変性を担保するために母数の時不変性を仮定すると，特に長期に亘って個
人内関係を調べる場合には現実的でなくなってしまう。 

LCM-SRや LCSで意図されているような，変化の軌跡（平均構造）のモデリングと（個
人内関係としての）相互関係の推測を同時に実行できる統計モデルは一挙両得で合理的に
みえる。しかし，これらは本来互いに無関連な研究仮説ではないために（Usami, Murayama 
et al., 2019），同時に実行することは個々の仮説の検証上むしろ障害になり，結果として二
兎を追う者は一兎をも得ずの事態になる可能性が高い。平均構造のみを捕捉する集団平均µ

のかわりに成長因子（𝑆𝑆）や累積因子（𝐴𝐴）をモデルに投入することで，交差遅延係数を通し
て本来捉えたい個人内関係が歪められる危険性がある。したがって，変化の軌跡のモデリン
グと個人内関係の推測のそれぞれに関心がある場合には，例えば LCM と RI-CLPM を用い
て個別的に検討することが好ましいと言えるだろう。 
 なお，LCM と CLPM の融合的な拡張を意図して提案されたその他のモデルに自己回帰
潜在軌跡モデル（autoregressive latent trajectory model: ALT; Curran & Bollen, 2001）があ
る。測定誤差の点を無視すれば，LCSにおいて時変的な重み（因子負荷）を伴うもう一つの
累積因子(𝐵𝐵)が加わったモデルが ALTに相当する（Usami, Murayama et al., 2019）。ALT に
おいても上記と同様の理由で，交差遅延係数が本来捉えたい個人内関係を反映していない
可能性が高く，また RI-CLPM と等価な意味での個人内関係を表すとは考えられない。 

GCLM 一般交差遅延モデル（general cross-lagged panel model: GCLM）は組織研究の
領域で，CLPM の一般化を通して因果関係により接近するための方法論の構築を目指して
Zyphur et al. (2020ab)によって提案された。これまでに説明した統計モデルの中では唯一，
Hamaker et al. (2015)やUsami, Murayama et al. (2019)の後に提案されたものであり，また
RI-CLPM ほどの数ではないが既に多くの適用事例が報告されている。Zyphur et al. (2020a)
は，個人効果(unit effect)としての「特性因子」6) と移動平均（mean average: MA）項を含
んだ変化のダイナミクスをより柔軟に表現できる統計モデルとしてGCLMを位置付けてい
る。 
 ここでは，議論の一般性を失うことなく，一次のラグを仮定した GCLMを説明する。こ
のモデルは，𝑡𝑡 ≧ 3において， 
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𝑥𝑥𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑥𝑥 + 𝜆𝜆𝑥𝑥𝑥𝑥𝐵𝐵𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖(𝑡𝑡−1) + 𝛾𝛾𝑥𝑥𝑥𝑥𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝛿𝛿𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥𝑥𝑥(𝑡𝑡−1) + 𝜁𝜁𝑥𝑥𝑥𝑥𝑑𝑑𝑦𝑦𝑦𝑦(𝑡𝑡−1) + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥 
                  𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝐵𝐵𝑦𝑦𝑦𝑦 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝛾𝛾𝑦𝑦𝑦𝑦𝑥𝑥𝑖𝑖(𝑡𝑡−1) + 𝛿𝛿𝑦𝑦𝑦𝑦𝑑𝑑𝑦𝑦𝑦𝑦(𝑡𝑡−1) + 𝜁𝜁𝑦𝑦𝑦𝑦𝑑𝑑𝑥𝑥𝑥𝑥(𝑡𝑡−1) + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦   （8） 
 
と表現される 7) 。𝛼𝛼𝑥𝑥𝑥𝑥, 𝛼𝛼𝑦𝑦𝑦𝑦は時点𝑡𝑡の効果（occasion effect）を表す切片項である。𝛽𝛽𝑥𝑥𝑥𝑥, 𝛽𝛽𝑦𝑦𝑦𝑦
は自己回帰（AR）係数であり，𝛾𝛾𝑥𝑥𝑥𝑥, 𝛾𝛾𝑦𝑦𝑦𝑦は交差遅延（CL）係数である。𝐵𝐵𝑥𝑥𝑥𝑥 , 𝐵𝐵𝑦𝑦𝑦𝑦は Zyphur et 
al. (2020ab)では個人効果または「特性因子」と呼ばれている共通因子であり，因子平均は
0 である。最初の測定値（𝑥𝑥𝑖𝑖1 , 𝑦𝑦𝑖𝑖1）については外生的な変数として扱い，これらの平均や
（共）分散を推定する。また，Zyphur et al. (2020ab)では明示的に述べられていないが，RI-
CLPM の特性因子のように，共通因子𝐵𝐵𝑥𝑥𝑥𝑥 , 𝐵𝐵𝑦𝑦𝑦𝑦と最初の測定値𝑥𝑥𝑖𝑖1と𝑦𝑦𝑖𝑖1は無相関であること
が仮定されている（ただし，後述する𝐵𝐵の累積因子としての性質から，2 時点目以降の測定
値とは相関する）。𝜆𝜆𝑥𝑥𝑥𝑥および𝜆𝜆𝑦𝑦𝑦𝑦は重み（因子負荷）である。Zyphur et al. (2020ab)では重み
を 1に設定することも可能な一方で，時変的な値として扱うことを推奨している。 
 𝛿𝛿𝑥𝑥𝑥𝑥および𝛿𝛿𝑦𝑦𝑦𝑦の項は過去（一時点前）の同じ変数からの残差の効果を表す移動平均（MA）
係数であり，𝜁𝜁𝑥𝑥𝑥𝑥および𝜁𝜁𝑦𝑦𝑦𝑦は過去の異なる変数からの残差の効果を表す交差遅延移動平均
（cross-lagged MA: CLMA）係数である。特に時点数が多い時系列データ（time series data）
を扱うモデルの中で MA項は伝統的に広く用いられている。GCLM では同じ変数からの効
果を AR 項とMA 項で，また別の変数からの効果を CL 項と CLMA項で表現していること
になる。各係数と残差（共）分散について時変的な値を仮定する場合，モデルの識別のため
には𝑇𝑇 = 4以上の縦断データが必要である。 
 Zyphur et al. (2020ab)は共通因子𝐵𝐵を RI-CLPMの特性因子(𝐼𝐼)の意味で捉え，GCLMに
おいて MA 項と CLMA 項を除いたモデルが RI-CLPM（において時変的な重みを特性因子
に仮定した場合）と等価になると説明している。しかし，本稿のこれまでの説明と(8)式の
表現からも明らかなように，共通因子𝐵𝐵は累積因子である。その意味でGCLMは，RI-CLPM
と等価な個人内関係を表す表現は与えていない（Usami, 2021）。また，時変的な重みを伴う
累積因子は，モデル適合度の観点からはより柔軟な表現を与えることが考えられる一方で，
相互関係の主要な構成要素である個人内変化やその個人差の情報を LCM-SR のように過剰
調整する危険性もあり，その結果として本来見たい個人内関係が歪められている可能性が
高い。 
加えてUsami (2021)では，MA項と CLMA項に関わる残差項は一般にそれが内容的に何

を意味する量なのかが茫漠としており，またそれが実質（例えば AR 項と MA 項，または
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CL 項と CLMA項を通して）複数回統制されていることの 2 つの理由から，GCLM内の交
差遅延係数の指す意味が複雑化することや多重共線性を誘発する可能性を指摘している。
勿論，MA 項や CLMA 項を入れることの適否は真のデータ発生プロセスに依存する事柄で
あり，また係数の解釈の複雑性自体は推測上のバイアスや推定精度の低下を意味しないが，
GCLM が抱えうる問題点である。 
本小節のまとめとモデルの統合的枠組 心理学や周辺領域で提案された LCM-SR, LCS

（または ALT）, GCLM はいずれも，潜在的な交絡変数，更には個人間の異質性を表現し
統制するために共通因子を導入している。そして，これらのモデルは共通因子の種類（特性
因子か累積因子か）やその平均構造の有無，更には個人内変動との相関関係の有無から主に
特徴づけられる。真のデータ発生プロセスは通常分からないという根本的な難しさがある
が，本小節で指摘した個人内関係の推測上これらのモデルにおいて生じうる問題点は，過剰
調整の問題（LCM-SR, GCLM），個人内関係と変化の軌跡（平均構造）に関する推測を同時
に行うことの問題（LCM-SR, LCS），係数の解釈の複雑性（GCLM）に分けられる。 

LCM-SR は RI-CLPM のように成長因子（𝐼𝐼,𝑆𝑆）とは無相関な偏差によって個人内関係の
推測を可能にするが，相互関係の主要な構成要素と考えられる個人内変化やその個人差を
反映している傾き因子𝑆𝑆の過剰調整により，本来見たい個人内関係が歪められ交差遅延係数
にバイアスが生じる可能性が高い。LCSの累積因子𝐴𝐴は自己回帰項・交差遅延項とともに回
帰式中に含まれている結果，特性因子とは異なり真値（または測定値）に対して時変的に寄
与する。この点は柔軟であるが，例えば実際の縦断データにおける（時不変的な）交絡変数
の影響がモデル式のような単純化した関数を通して適切に表現できているかの判断は難し
い。また，LCS では集団平均µを含まないことから，自己回帰係数・交差遅延係数などの母
数についての時不変的な制約を課さない限り尺度不変性を満たさない。累積因子𝐵𝐵を含む
GCLM についても，それが時変的な重み（因子負荷）を伴う累積因子を導入していること
から，LCM-SRのように個人内変化や個人差の情報を過剰調整する危険性がある。加えて，
移動平均項の導入により交差遅延係数の指す意味が複雑化することや多重共線性を誘発す
る可能性がある。 
またこれらのモデルは RI-CLPM と比較して不適解の発生リスクも高いとされる（e.g., 

Orth et al., 2021）。Orth et al. (2021)では GCLMについての検討は直接的にはなされてい
なかったものの，そのモデルが複雑に構造化されている点からすると，LCM-SRや LCSと
同等以上の不適解のリスクがあると考えられる。 
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Hamaker et al. (2015)以降，RI-CLPM の他にも，特に GCLM についてはその適用事例が
増えているが，これまで見てきたように各モデルが表現している個人内関係の意味は同じ
ではない。そしてこれらのモデルは数理的にも異なる平均構造と共分散構造を与えること
から，交差遅延係数についても異なる推定結果を与える（e.g., Usami, Murayama et al., 2019; 
Orth et al., 2021; Usami, 2021）。しかし，実際の適用においては，このような違いや上述の
起こり得る問題に対して必ずしも十分な注意が払われていないように思われる。 
 特性因子や累積因子などの共通因子の種類と因子数の違いに加え，各モデルを導入した
文献で使用されていた記号や名称の違いも一因として，既存のモデルの区別は必ずしも容
易ではない。Usami, Murayama et al. (2019)では，(i)共通因子の種類（累積因子か否か），
(ii)変化の軌跡（平均構造）のモデリングへの関心の有無（各時点の集団平均µや切片項𝛼𝛼を
含むか否か）， (iii)測定誤差の仮定の有無，の 3つの観点から，相互関係を推測する目的で
利用される様々な統計モデルの数理的・概念的な違いを説明する統合的枠組（unified 
framework）を示した。そして各モデルが統合的枠組の特別な場合，すなわち特定の一部の
共通因子や母数のみを仮定した下位モデルとして位置づけられることや，またモデル間の
数理的関係についてもパス図や概念図を通して示している。また，移動平均項の存在につい
ても考慮すれば，GCLMも同様の枠組を用いて整理できる（Usami, 2021）。ただしこれら
の研究で行われた整理においては，累積因子との関わりで言及はされていたものの，経済学
を中心に利用されている動学的パネルモデル（DPM）は直接の比較対象としては含まれて
いなかった。 
DPM の概要と RI-CLPMとの数理的関係 

DPM の概要 DPM（Wooldridge, 2011; Hsiao, 2014; Allison, Williams, & Moral-Benito, 
2017）では通常，相互関係ではなく一方向の関係性を扱う場合が多いが，比較のためこれま
でと同様の 2変数の場合の表現： 
 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑥𝑥 + 𝐴𝐴𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖(𝑡𝑡−1) + 𝛾𝛾𝑥𝑥𝑥𝑥𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥 
                                               𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑦𝑦𝑦𝑦 + 𝐴𝐴𝑦𝑦𝑦𝑦 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝛾𝛾𝑦𝑦𝑦𝑦𝑥𝑥𝑖𝑖(𝑡𝑡−1) + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦                 （9） 
 
に基づいて説明する（e.g., Allison et al., 2017; Usami, 2022）。ここで，𝛼𝛼𝑥𝑥𝑥𝑥, 𝛼𝛼𝑦𝑦𝑦𝑦は時点𝑡𝑡の効
果を表す切片項である。𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑦𝑦𝑦𝑦は累積因子（ただし経済学では，個人効果や個別効果などと
呼ばれる）であり，その平均は 0である。そして𝛽𝛽𝑥𝑥𝑥𝑥, 𝛽𝛽𝑦𝑦𝑦𝑦は自己回帰係数，𝛾𝛾𝑥𝑥𝑥𝑥, 𝛾𝛾𝑦𝑦𝑦𝑦は交差遅
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延係数，𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥,𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦は残差である。最初の測定値（𝑥𝑥𝑖𝑖1と𝑦𝑦𝑖𝑖1）の間，ならびにそれらと 2 つの
累積因子との間には相関（共分散）を仮定し推定する 8)。また，CLPM を(1)式から(2)式に
変形した場合と同様，(9)式も切片𝛼𝛼の代わりに集団平均µを用いた表現： 
 
                                                           𝑥𝑥𝑖𝑖𝑖𝑖 = µ𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑖𝑖𝑖𝑖∗ ,        𝑦𝑦𝑖𝑖𝑖𝑖 = µ𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑖𝑖𝑖𝑖∗                      (10𝑎𝑎) 

𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝐴𝐴𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖(𝑡𝑡−1)
∗ + 𝛾𝛾𝑥𝑥𝑥𝑥𝑦𝑦𝑖𝑖(𝑡𝑡−1)

∗ + 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥∗  
                                                     𝑦𝑦𝑖𝑖𝑖𝑖∗ = 𝐴𝐴𝑦𝑦𝑦𝑦 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑡𝑡−1)

∗ + 𝛾𝛾𝑦𝑦𝑦𝑦𝑥𝑥𝑖𝑖(𝑡𝑡−1)
∗ + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦∗               (10𝑏𝑏) 

 
ができる。自己回帰係数・交差遅延係数や累積因子に関する推定値ならびにモデル適合度は
この変形とは無関係である。比較の観点から，この表現の場合の DPM のパス図を Figure 
1d に示す。 
ただし動学的パネルモデルと一口に言っても，トレンド項や移動平均項を仮定したもの

など数多くのモデルが存在する。また，これまでに説明した心理学や周辺領域で主に利用さ
れてきた統計モデルに比べて，経済学における動学的パネルモデルは例えば為替レートの
分析など，時点数が(例えば 100や 1000 を超えるような)大きく時点間隔が比較的短い状況
で用いられることがしばしばある。また，経済学では将来値の予測に関心がある場合も比較
的多い。これらなどを理由として，動学的パネルモデルでは時不変的な係数を仮定すること
が一般的である。この点は後述する（DPMという表記を用いている）Andersen(2022)の議
論でも同様であるが，本稿ではモデル比較のため，時不変的な場合も踏まえつつも(9)式や
(10)式では時変的な係数を仮定している。本稿では移動平均項等を含まない限定的な範囲
の，また時変的な係数も許容したモデルを指して DPM と表記している点に注意されたい。 
加えて，経済学における（時不変的な係数を仮定した）GPMでは，個人効果を変量効果

あるいは固定効果として扱うのかや後述する初期条件の仮定に依存して推定量の形が変わ
ることから，一般化モーメント法（generalized method of moments: GMM）など別の推定
量が利用されることが多い（千木良他，2011）。本節での主眼は異なる統計モデル間の表現
の比較にあるが，これまでのモデルと同様に SEMに基づく最尤法（ML-SEM）を用いるこ
とを想定する。動学的パネルモデルの典型的なモデル表現と記法，ならびに ML-SEMの実
装の詳細および GMM 法との結果の比較に関しては Moral-Benito (2013)や Allison et al. 
(2017)が参考になる。 
 さて(9)式の DPM は，測定誤差の点を無視すれば，LCS において切片項𝛼𝛼を含め累積因
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子の平均を 0と固定した場合に相当する。これにより平均構造が𝛼𝛼の関数として表現できる
結果，時変的な係数を仮定した LCS で見られたような尺度不変性の問題は解決する。また，
別の見方をすれば，DPM は GCLM において累積因子に係る時変的な重みを 1 に固定しか
つ MA 項・CLMA項を 0と置いた場合に相当することも分かる。したがって，真のデータ
発生プロセスに依存する事柄ではあるものの，過剰調整のリスクや解釈可能性の問題も軽
減されると考えられる。 

RI-CLPM との数理的関係 このような理由から，前小節で説明したモデル（LCM-SR, 
LCS, GCLM）に比べ DPM の方がより妥当な形式で個人内関係の推測が実現できると考え
られる。それではこの DPM と，心理学や周辺領域を中心に急速に普及している RI-CLPM
ではどちらが統計モデルとして好ましいと考えられるだろうか。 
 この問題を考える上では，これらモデル間の数理的関係についてまず整理する必要があ
る。(3)式の RI-CLPMは偏差について，また(9)式の DPMは測定値についての式をそれぞ
れ設定していることからこれらのモデルは一見数理的には無関係に見える。しかし，これら
2 つのモデルは，仮に自己回帰係数・交差遅延係数が時不変（かつ，係数行列の固有値[の
絶対値]が 1未満; e.g., Hamaker, 2005）という条件が成立すれば，それぞれのモデルにおい
てある仮定を加えることによって互いに数理的に同値の表現を与え，同じ係数を示すこと
が知られている（Andersen, 2022）。その 1 つは，DPM において𝑡𝑡 = 1以前に変化のプロセ
スが実際に生じていることを考慮するために，母数のある関数でこの時点の累積因子に係
る重み（因子負荷）を設定すると，このモデルは RI-CLPM に等しくなる。このような設定
は，制約アプローチ（constrained approach）と呼ばれることがある（e.g., Jongerling & 
Hamaker, 2011）。また，上述した ALT において同様の手続きで重みを設定すると LCM-
SR と同値となることは以前から知られている（Hamaker, 2005; Usami, Murayama et al., 
2019）。 
 もう 1 つが，今度は RI-CLPM において特性因子と最初の測定値の間に相関を仮定した
場合，DPMと同値になるというものである（Andersen, 2022）。（時不変的な）交差遅延係
数の推定値も同じになる。このような設定は先決アプローチ（predetermined approach）と
呼ばれることがある。本稿では Andersen(2022)に倣って，このような仮定を課した RI-
CLPM を predetermined RI-CLPM と呼ぶこととし，そのパス図を Figure 1cに示す。この
ような相関の設定については前節で述べたが，これにより特性因子は累積因子と同様に時
不変的な直接効果を示さない共通因子となり，また測定値の分散を個人内と個人間の分散
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に直交分割する役割も消失する。このことが predetermined RI-CLPMと DPM の間の同値
関係を生み出すと言えるが，上述のように，predetermined RI-CLPM は RI-CLPM とはも
はや異なる設計思想に基づく統計モデルと考えるべきである。そして，時不変的な係数の設
定などの上述の条件が満たされない場合は，predetermined RI-CLPM と DPM の間の同値
関係は成立しない。この場合，RI-CLPM とは別に，累積（「的な」）因子を有するこれら 2
つの統計モデルの候補が存在することになる。 
 前々節で説明した MACC データに対して predetermined RI-CLPM と DPM を適用した
結果を Table 1 に示している。既に示した CLPMと RI-CLPMの場合と同様，（共通因子を
変量効果として扱った）ML-SEMにより推定を実行した。表から，時不変な自己回帰係数・
交差遅延係数と残差（共）分散を仮定した場合には，predetermined RI-CLPM と DPMで
係数（および標準誤差）の推定結果が等しいことが分かる。反面，時変的な係数を仮定した
場合はこのような関係は成立していない。また，これら 2つのモデルは累積（「的な」）因子
が時変的に寄与するという意味でより柔軟な表現力を有することを反映して，RI-CLPMよ
りも高い適合度を示している。また，（時変的な条件において）DPM は RI-CLPM や
predetermined RI-CLPMと比べて一部の交差遅延係数の推定値の統計的有意性が一致して
いないなど，やや異なる傾向の推定結果を示している。 
RI-CLPM再考：特性因子の因果推論上の役割とモデル選択 
これまでの内容を踏まえて，RI-CLPM が統制している特性因子とは何で，また因果推論

上どのような意味をもつのかについて，モデル選択の視点も含めて再考する。 
特性因子・交絡変数・センタリング RI-CLPM の特性因子は観測変数に（時不変的な）

直接効果としてのみ寄与する一方で，偏差である個人内変動部分には寄与しない。因果推論
の用語で言えば，観測変数は特性因子と個人内変動部分の両方の結果になる合流点（collider）
であり，特性因子から個人内変動への経路は合流点である観測変数によりブロックされる。 
この観点からUsami (2022)は，RI-CLPM（Figure 1b）を反映したデータ発生プロセスや

因果効果の識別条件について具体的に提示しながら，特性因子は観測されない個人間の異
質性を統制しているものの，累積因子のような（時不変的な）交絡変数としては厳密には位
置づけられないとしている 9)。しかし，RI-CLPMで表現されている個人内関係は潜在変数
である偏差同士の関係でありそれについての推論は観測変数の情報を基に行う必要がある
ことから，観測変数と個人内変動の情報を繋ぐ特性因子を無視し統制しないことは交差遅
延係数の推定結果にバイアスを生むことを指摘している。 
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これは，仮に時不変的な交絡変数がデータ発生プロセスに存在すれば，RI-CLPM ではそ
れを直接考慮できず，その影響が特性因子の中に部分的な形で取り込まれることを示唆す
る。特性因子の導入は交絡変数というよりはむしろ，階層線形モデルの文脈でよくなされる，
(真の)個人内平均（person mean）によるセンタリング（または中心化; e.g., Usami, 2017; 
Asparouhov & Muthén, 2018）の操作に対応するものと考えられる。そしてセンタリングは，
RI-CLPM（または LCM-SR）のような偏差についてのモデルと DPM（または ALT）のよ
うな測定値に対するモデルの同値関係を繋ぐ核となる操作とも考えられる。（ラグ付き変数
を含まない）階層線形モデルにおけるセンタリングと個人内関係および個人間関係の分割
については Wang & Maxwell (2015)で論じられているが，本稿で論じた様々な統計モデル
内の共通因子の解釈と各変数のセンタリングの有無との関係については，今後更なる検討
が必要と思われる。 
データ発生プロセスと初期条件の仮定 Usami (2022)では，初期条件（initial condition）

と呼ばれる最初の時点(𝑡𝑡 = 1)の変数の扱いについても，データ発生プロセス内で想定され
る共通因子が特性因子なのか累積因子かによって異なることを説明している。特に調査・観
察研究では，縦断データの多くは𝑡𝑡 = 1以前から実際のデータ発生プロセスが生起している
と考えるのが自然である。そのようなとき，累積因子がプロセス内で想定されるならば最初
の時点で既にその影響が測定値に累積しているため，例えば LCS や ALT, DPM のように
その影響を考慮したモデリング（例えば，最初の測定値と累積因子の間の相関関係を仮定す
る先決アプローチの導入）が必要である（e.g., Gische, West, & Voelkle, 2021）。一方，特性
因子（のみ）がプロセス内で想定される場合それは測定値への直接効果としてのみ寄与し，
最初の時点における個人内変動への累積的影響はないため，仮に𝑡𝑡 = 1以前にプロセスが生
起していたとしても，特性因子と𝑡𝑡＝1の偏差（または，個人内変動）の間に相関関係を仮定
する必要性はない（Usami, 2022）。つまり，累積因子のような交絡変数としての異質性がプ
ロセスに含まれないともし仮に考えられるのであれば，RI-CLPM で行われているような，
個人内変動とは無相関な特性因子の導入とそれによる個人内分散と個人間分散への直交分
解は妥当な表現となる。 

RI-CLPMへの批判とモデル選択 Lüdtke & Robitzsch (2021)は観測されていない時不変
的な交絡変数がある場合に，RI-CLPM がその影響を適切に対処できる条件はかなり限定さ
れていることをシミュレーションや分析的検討を通して主張している。これは上述のよう
に，RI-CLPM で統制している特性因子は厳密には交絡変数ではなく，かつ時不変的な直接
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効果の形で寄与する量として特性因子を表現していることを反映している。また，Lüdtke & 
Robitzsch (2021)は高次のラグを仮定した CLPM の有効性を指摘しているが，因果推論上
それが適切かどうかはやはり真のデータ発生プロセス次第であり，CLPM が共通因子や個
人効果を含まない以上それが捕捉可能な（観測されない）異質性の範囲は限定的であると思
われる。 
さらに Lüdtke & Robitzsch (2021)は，個人内平均（期待値）周りの変動を基盤とした個

人内関係の推測は，個人間差を説明する諸要因の潜在的な影響を無視した上で成立してい
るという理由から，その推測自体が本来の因果仮説の検証から逸脱したものになっている
と批判している。関連して，Orth et al. (2021)は個人間関係の推測であれば CLPMを，ま
た個人内関係の推測であれば RI-CLPM の利用を推奨している。Lüdtke & Robitzsch (2021)
自身も述べているがこれらはつまるところ，生物統計学や疫学の領域で近年頻繁に言われ
ている，関心のある科学的疑問に対応する推定の対象を指す estimandの違いの問題とも考
えられる。Hamaker et al. (2015)が当初指摘していたように，CLPMで調べている関係は純
粋な個人内関係とも個人間関係とも通常は明確には捉えられないため，その意味では例え
ば RI-CLPM や DPM のように何らかの仮定とともに共通因子（または個人効果）を導入
して個人内関係と個人間関係を分離した推測を行うことが基本的に好ましいと思われる。  
因果推論においては，想定されるデータ発生プロセスを適切に反映した統計モデルを設

定することが一般に要求される（e.g., Gische et al., 2021）。しかし，真のデータ発生プロセ
ス内に特性因子と累積因子のいずれ（または両方）が含まれるのか或いは含まれないのか，
またどのような経路や関数形を通して測定値に寄与するのかはほとんどの場合不明である
（e.g., Curran & Bauer, 2011; Andersen, 2022; Usami, 2022）。また直接効果に限定されない
測定値への時変的な寄与を表現できる累積因子は柔軟な一方，実際の縦断データにおける
（時不変的な）交絡変数の影響が例えば DPM で想定されているような経路や関数形を通
して適切に表現できているかの判断は必ずしも容易ではないと思われる。 
これらを踏まえると，想定されるデータ発生プロセスに基づき RI-CLPM または DPM 

（または，predetermined RI-CLPM）といった特定の統計モデルを支持する立場に立って
推定を行いながらも，Table 1 で比較したように，他の候補のモデルについても感度分析
（sensitivity analysis）として適宜推定を行い，適合度指標や情報量規準の結果も参照しなが
らモデル選択の適切性や推定結果の頑健性について検討していくことが 1 つの現実的な手
段と思われる（e.g., Usami, 2022）。 
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まとめと展望 

 
本稿のまとめ 
 Hamaker et al. (2015)による CLPM への批判から 7年が経過し，長年 gold standardであ
った CLPM にとって代わるほどの勢いで RI-CLPM の普及が心理学や周辺領域を中心に急
速に進んでいる。RI-CLPM を巡る論点を幾つか本稿では提示したが，少なくとも CLPM と
RI-CLPM の対比で言えば，観測されない個人間の異質性を反映する特性因子を含めない
CLPM は，仮に高次のラグを仮定したとしても個人内関係の推測には適さないと言える。
一方で RI-CLPM は，やや限定的な形で個人間の異質性を表現していると考えられるもの
の，個人内関係の推測のための有効な方法の一つと位置付けられる。 
しかし，他にも利用可能な統計モデルは多く存在する。また各モデルで表現している個人

内関係の意味や交差遅延係数の推定値は通常異なるにもかかわらず，モデル間の数理的・概
念的関係は必ずしも明確に整理されておらず，実際の適用においてもこのような違いに対
して必ずしも十分な注意が払われていないように思われる。個人内関係としての相互関係
の推測のための統計モデルを巡る議論は現在でも多くの論考が提出され複雑多様化してい
るが，本稿では著者自身の研究（Usami, Murayama et al., 2019; Usami, 2021, 2022）も交え
ながら一定の整理を試みた。 
実際のデータ発生プロセスや真のモデルが一般に研究者にとって不明な中で，統計モデ

ル内の共通因子や個人効果が潜在的な交絡変数（更には，個人間の異質性）を適切に統制し
ているかどうかの判断は難しい。そのことが，個人内関係を推測する上での最良のモデル選
択や交差遅延係数の解釈のあり方に関して一義的な結論を導くのを困難にしている。その
中で本稿では，過剰調整の問題，個人内関係と変化の軌跡（平均構造）に関する推測を同時
に行うことの問題，係数の解釈の複雑性の観点から，既存の統計モデル（LCM-SR, LCS, ALT, 
GCLM）の個人内関係の推測上生じうる問題点を整理した。 
このような問題点を回避し，直接効果に限定されない測定値への時変的な寄与を表現で

きる累積因子を含む統計モデルが，(9)式または(10)式で表される DPM である。一方 RI-
CLPM の特性因子は安定した個人差としての時不変的な直接効果としてのみ測定値に寄与
する。RI-CLPMと DPMは個人内関係の推測のための統計モデルとして有力な選択肢とな
りえるが，いずれが実際のデータ発生プロセスを的確に捕捉しバイアスの少ない個人内関
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係の推測を実現できるかは必ずしも一概には言えないと思われる。DPM の累積因子は柔軟
な一方，実際の縦断データにおける（時不変的な）交絡変数の影響がモデルで想定されてい
るような経路や関数形を通して適切に表現できているかの判断は必ずしも容易ではないと
思われる。そのほか，RI-CLPM の特性因子のような解釈は最早できないが，最初の測定値
と特性因子の間に相関を仮定した predetermined RI-CLPMと呼ばれる別のモデル表現につ
いても説明した。時不変的な自己回帰係数・交差遅延係数・残差（共）分散を仮定する場合
は predetermined RI-CLPM と DPM は数理的に同値であるが（Andersen, 2022），それを
仮定しない場合には異なる推定結果を与える（Table 1）。 
利用可能な統計モデルの選択肢はこのように多様であるが，想定されるデータ発生プロ

セスに基づき RI-CLPMまたは DPM（または，predetermined RI-CLPM）といった特定の
統計モデルを支持する立場に立って推定を行いながらも，他の候補のモデルについても感
度分析として適宜推定を行い，適合度指標や情報量規準の結果も参照しながらモデル選択
の適切性や推定結果の頑健性について検討していくことが 1 つの現実的な手段と思われる
（e.g., Usami, 2022）。 
展望 

RI-CLPMかDPMか，或いは（predetermined）RI-CLPMなど他の統計モデルか。しか
し，そもそもこれらの選択の違いに関係なく，ありうる（特に，時変的な）交絡変数を事
前に特定の上収集して統計モデルの中で適切に統制する必要性は変わらない。RI-CLPMを
はじめ本稿で紹介した多くの統計モデルはSEMを通して通常推定され，また観測された交
絡変数がある場合，個人内関係の推測に関心のある変数（𝑋𝑋,𝑌𝑌）とは線形的な関係を前提
として表現されることが多い。このような手続きは特に連続変数を扱う場合には一定の有
用性がある一方，因果推論の観点からは，通常のSEMやパス解析で仮定されている線形性
はしばしば批判されるところである（e.g., Hong, 2015）。 
一方で統計的因果推論の研究の中では，このような線形性を前提としないものや，モデ

ルの誤設定の影響を受けにくい頑健なアプローチもある。この観点からUsami (2022)で
は，RI-CLPMが想定するデータ発生プロセスを踏まえた上で特性因子と個人内変動につい
ての数理的定義を与えるとともに，時変的な交絡変数との線形性を必ずしも仮定しない段
階推定に基づく個人内関係の推測方法を提案している。より具体的には，SEM（または因
子分析モデル）に基づく測定モデルにより個人内変動を表す得点（within-person 
variability score）をまず予測し，それを測定値と見做して，主に疫学の領域で扱われてい
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る周辺構造モデル（marginal structural model: MSM）や構造ネストモデル（structural 
nested model: SNM）と呼ばれる方法（e.g., Robins & Hernán, 2009; Hernán & Robins, 
2021）を適用して効果を推定する。この方法は，DPMに含まれている累積因子の存在を
仮定した場合の推測にも拡張できる。このような心理統計学に必ずしも限定されない，統
計的因果推論の領域で生まれた方法論も踏まえた個人内関係の推測のための方法論的展開
は今後の重要な研究課題の一つであろう。 
 集団内の関係と集団間の関係，或いは個人内関係と個人間関係の分離や区別に関する問
題は，心理学や周辺の研究領域において古くから関心がもたれてきた。その意味で古くて
新しいとも言える個人内関係の推測を巡る議論は，Hamaker et al. (2015)以降新たな展開
を迎えた。現在，RI-CLPMに関わる話題を筆頭にこのテーマは活発に議論がされてはいる
がその中心はおおよそ心理統計学者であり，例えば（計量）経済学や疫学など他の統計学
領域や統計的因果推論の研究者を巻き込んだものとは現状言えない。本稿が個人内関係の
推測を巡る様々な議論の整理や新たな問題提起の一助となり，（心理）統計学者は勿論，
利用者である心理学や周辺領域の研究者も交えたより健全な議論を促進する契機となるこ
とを期待したい。 
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Statistical Models for the Inference of Within-person Relations: 

A Random Intercept Cross-Lagged Panel Model and Its Interpretation 

 

A cross-lagged panel model (CLPM) has been widely used in longitudinal research in psychology to 

infer reciprocal relations between variables. Since the critique of Hamaker, Kuiper & Grasman 

(2015), a random intercept CLPM (RI-CLPM), which includes stable trait factors as unobserved 

heterogeneity in order to uncover within-person processes, has spread rapidly. However, although 

various longitudinal models that examine reciprocal relations exist in different contexts and 

disciplines, their relations have not been well recognized and an issue regarding model choice is still 

under discussion. In this article, we first provide an overview of the RI-CLPM and then introduce 

other longitudinal models in order to clarify their relations as well as potential difficulties inferring 

within-person processes. We explain that stable trait factors that have time-invariant impacts on 

observations are modeled separately from regression models, making this factor conceptually and 

mathematically different from common factors included in many other models. We also emphasize 

that the assumption that stable trait factors and within-person processes are uncorrelated is key to 

understanding the statistical properties of stable trait factors and how the RI-CLPM is 

mathematically related to dynamic panel models, which could be a useful candidate as a statistical 

model. 

【keywords】longitudinal data, within-person relation, causal inference, cross-lagged panel 

models, structural equation modeling 
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脚注 

1) 個人内関係と個人間関係は，それぞれintra-individual relationおよびinter-individual 
relationと呼ばれることもある。 
2) ただし，例えばウェアラブルデバイスによる自動計測を活用する場合など，個人の数だけ
でなく測定時点数も多い（また，個人によって測定回数や測定時点もしばしば異なる）強縦
断データ（intensive longitudinal data）も最近では数多く収集されるようになっている。こ
のようなデータに対して，時間を連続的な形式で取り扱う連続時間モデル（continuous time 
model; Voelkle, Oud, Davidov, & Schmidt, 2012; Ryan, Kuiper, & Hamaker, 2018）を用いる
アプローチは近年注目を集めており，測定時点間の間隔（ラグ）の違いによって（交差遅延）
係数の大きさが変わることへの問題に対処できる。RI-CLPMや本稿で説明するその他の統
計モデルを想定した場合の連続時間モデルの構築や比較は今後の重要なテーマと思われる。 
3) Orth et al. (2022)では，CLPM および RI-CLPMを適用した際の交差遅延係数の効果量に
関する経験的なガイドラインの設定を試みている。 
4) STARTSは，もともと潜在状態特性モデル（latent state-trait model）と呼ばれる，縦断
的に測定された１つの変数に対する特性と状態（state）の分割を目的としたモデルから派
生している。STARTSは当初は１つの変数についてのモデルであったが2変数以上への拡
張が行われ，そのモデルには交差遅延項が含まれることになった。 

5) Usami, Murayama et al. (2019)では，stationarityという用語を，自己回帰係数・交差遅延
係数・残差（共）分散の時不変的な設定を指すものとして用いている。 

6) Zyphur et al. (2020a)ではモデル内の「特性因子」のことをstable factorsと表記してい
る。 
7) Zyphur et al. (2020ab)では自己回帰係数𝛽𝛽𝑥𝑥，交差遅延係数𝛾𝛾𝑥𝑥，移動平均係数𝛿𝛿𝑥𝑥，交差遅
延移動平均係数𝜁𝜁𝑥𝑥について時不変的な値を仮定しているが，時変的な値への拡張も可能で
ある。 
8)累積因子をランダム切片と見ると，心理学研究でよく利用される縦断データのための（ラ
グ付き変数を伴い，変量効果を仮定した）階層線形モデルと類似しているように思われるか
もしれない。しかし，階層線形モデルでは時点の効果を表す切片項は含まれず，係数が時点
間で変わることも通常は表現されない。また時変的な残差分散も通常は仮定されず，ランダ
ム切片と説明変数は無相関と仮定している点が大きく異なる。ただし変量効果モデルか固
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定効果モデルかの扱いは変数のセンタリング（中心化）に関わる点でもある。この点に関す
る，ラグ付き変数を含まないモデルの場合の解説に Hamaker & Muthén (2020)がある。 
9) Usami, Murayama et al. (2019)では特性因子を交絡変数として位置付けて説明していた
が，Usami (2022)において訂正している。 
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Table 1: 各統計モデルに基づく分析結果の比較 
 

CLPM  RI-CLPM  predetermined RI-CLPM DPM 
  

時不変 時変 時不変 時変* 時不変 時変 時不変 時変 

 Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE 
𝛽𝛽𝑦𝑦2 
𝛾𝛾𝑦𝑦2 
𝛽𝛽𝑥𝑥2 
𝛾𝛾𝑥𝑥2 
𝛽𝛽𝑦𝑦3 
𝛾𝛾𝑦𝑦3 
𝛽𝛽𝑥𝑥3 
𝛾𝛾𝑥𝑥3 
𝛽𝛽𝑦𝑦4 
𝛾𝛾𝑦𝑦4 
𝛽𝛽𝑥𝑥4 
𝛾𝛾𝑥𝑥4 
𝛽𝛽𝑦𝑦5 
𝛾𝛾𝑦𝑦5 
𝛽𝛽𝑥𝑥5 
𝛾𝛾𝑥𝑥5 
𝛽𝛽𝑦𝑦6 
𝛾𝛾𝑦𝑦6 
𝛽𝛽𝑥𝑥6 
𝛾𝛾𝑥𝑥6 
 

 
 

.82  .01  .91  .03  .70  .01  .22  .43  .53  .02  .59  .05  .53  .02  .45  .04  

.04  .01  .05  .03  -.01  .02  .08  .06  -.01  .02  -.04  .05  -.01  .02  -.02  .03  

.51  .01  .52  .01  .17  .01  .29  .14  .17  .01  .24  .02  .17  .01  .20  .02  

.01  .00  .05  .02  -.01  .01  2.4  1.7  -.01  .01  -.03  .02  -.01  .01  .06  .03  

.82  .01  .85  .02  .70  .01  .63  .03  .53  .02  .31  .07  .53  .02  .47  .03  

.04  .01  .09  .03  -.01  .02  .07  .05  -.01  .02  .01  .05  -.01  .02  .03  .03  

.51  .01  .47  .01  .17  .01  .12  .02  .17  .01  .14  .02  .17  .01  .15  .02  

.01  .00  .05  .01  -.01  .01  .06  .02  -.01  .01  .01  .03  -.01  .01  .04  .02  

.82  .01  .85  .02  .70  .01  .70  .03  .53  .02  .11  .11  .53  .02  .50  .03  

.04  .01  .04  .03  -.01  .02  .02  .05  -.01  .02  .14  .07  -.01  .02  .04  .04  

.51  .01  .53  .01  .17  .01  .11  .02  .17  .01  .11  .02  .17  .01  .17  .02  

.01  .00  -.01  .01  -.01  .01  .00  .01  -.01  .01  .00  .04  -.01  .01  .00  .01  

.82  .01  .82  .01  .70  .01  .76  .02  .53  .02  .58  .04  .53  .02  .54  .02  

.04  .01  -.03  .03  -.01  .02  -.06  .05  -.01  .02  -.02  .06  -.01  .02  -.02  .04  

.51  .01  .49  .01  .17  .01  .11  .02  .17  .01  .08  .03  .17  .01  .11  .02  

.01  .00  .01  .01  -.01  .01  -.01  .01  -.01  .01  .01  .02  -.01  .01  .01  .01  

.82  .01  .79  .01  .70  .01  .66  .02  .53  .02  .51  .03  .53  .02  .53  .02  

.04  .01  .02  .03  -.01  .02  -.06  .05  -.01  .02  -.01  .05  -.01  .02  .03  .04  

.51  .01  .55  .02  .17  .01  .20  .03  .17  .01  .18  .03  .17  .01  .17  .02  

.01  .00  .00  .01  -.01  .01  -.01  .01  -.01  .01  .01  .01  -.01  .01  .01  .01  
𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼𝑦𝑦, 𝐼𝐼𝑥𝑥�|𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴𝑦𝑦,𝐴𝐴𝑥𝑥� 
 
  

   
.05  .01  .04  .01  .05  .01  .04  .01  .03  .01  .01  .01  

         𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦1,𝑥𝑥1)  
𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑥𝑥,𝑦𝑦1)|𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴𝑥𝑥, 𝑦𝑦1) 
𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑥𝑥,𝑥𝑥1)|𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴𝑥𝑥, 𝑥𝑥1) 
𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼𝑦𝑦,𝑦𝑦1�|𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴𝑦𝑦, 𝑦𝑦1� 
𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑥𝑥,𝑥𝑥1)|𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴𝑥𝑥, 𝑥𝑥1)  

.05  .02  .04  .02  -.02  .01  -.01  .01  -.05  .02  -.04  .02  .03  .02  .04  .02          
-.02  .01  -.01  .02  .04  .01  .01  .01          
.01  .01  -.01  .01  .13  .01  .12  .01          

-.60  .05  -.55  .06  .26  .02  .30  .02          
.04  .01  .04  .02  .04  .01  .04  .01  

        𝑉𝑉(𝐼𝐼𝑥𝑥)|𝑉𝑉(𝐴𝐴𝑥𝑥)  
        𝑉𝑉�𝐼𝐼𝑦𝑦�|𝑉𝑉�𝐴𝐴𝑦𝑦� 
 
 
       

   
.15  .01  .15  .01  .15  .01  .15  .01  .10  .01  .40  .01     
.58  .04  .61  .03  1.1  .04  1.1  .06  .25  .03  .63  .03  

               𝑉𝑉(𝑥𝑥1) 
               𝑉𝑉(𝑦𝑦1) 

.41  .01  .41  .01  .25  .01  .26  .01  .25  .01  .27  .01  .41  .01  .10  .01  

.57  .03  .62  .03  .03  .03  .01  .01  .64  .06  .59  .06  .58  .03  .26  .03  
df 68 40 65 49 61 33 61 33 

CFI 0.875 0.895 0.959 0.966 0.964 0.991 0.964 0.988 
AIC 73465.64 73192.02 72224.17 72125.29 72151.05 71778.16 72151.05 71818.56 
BIC 73607.51 73514.47 72385.39 72389.69 72338.07 72145.75 72338.07 72186.15 

RMSEA 0.077  0.091  0.045  0.047  0.043  0.030  0.043  0.034  
SRMR 0.113  0.101  0.066  0.060  0.066  0.030  0.066  0.031  

*「時不変」では自己回帰係数・交差遅延係数・残差（共）分散に時点間の等値制約をかけている。ただしRI-CLPMの
時不変条件では不適解のため，残差（共）分散に等値制約をかけている。残差（共）分散および平均・切片の推定結果
は省略している。太字は両側5%水準で有意であること，イタリックは対応する数値が同じであることを意味する。 
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Figure 1: 各統計モデルのパス図 
*残差共分散を表すパスは省略している。各共通因子の平均は0であり（共）分散を推定する。
(c)predetermined RI-CLPMの共通因子（𝐼𝐼）は，測定値に対して時不変的な直接効果を示す本来の(b)RI-
CLPMの特性因子とはその概念的・数理的役割が異なり，また測定値の分散を個人間分散と個人内分散に
直交分解しない。ただし時不変的な自己回帰係数・交差遅延係数と残差（共）分散を仮定した場合，
(c)predetermined RI-CLPMと(d)DPMにおけるこれらの推定値は同じになる。 



44 
 

 

Figure 2:（1変数の）RI-CLPMにおける、測定値の分散に対する特性因子の分散の割合
（𝑅𝑅𝑦𝑦𝑦𝑦2 = 𝑅𝑅2 = 0.1, 0.9）と自己回帰係数（𝛽𝛽 = 0.2, 0.7）別に見た変化の軌跡の例(𝑁𝑁 =

10,𝑇𝑇 = 20, µ𝑦𝑦𝑦𝑦 = µ = 3) 


