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WITHIN-PERSON VARIABILITY SCORE-BASED CAUSAL INFERENCE: A TWO-STEP
ESTIMATION FOR JOINT EFFECTS OF TIME-VARYING TREATMENTS
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Behavioral science researchers have shown strong interest in disaggregating within-person relations
from between-person differences (stable traits) using longitudinal data. In this paper, we propose a method
of within-person variability score-based causal inference for estimating joint effects of time-varying con-
tinuous treatments by controlling for stable traits of persons. After explaining the assumed data-generating
process and providing formal definitions of stable trait factors, within-person variability scores, and joint
effects of time-varying treatments at the within-person level, we introduce the proposed method, which
consists of a two-step analysis. Within-person variability scores for each person, which are disaggregated
from stable traits of that person, are first calculated using weights based on a best linear correlation pre-
serving predictor through structural equation modeling (SEM). Causal parameters are then estimated via a
potential outcome approach, either marginal structural models (MSMs) or structural nested mean models
(SNMMs), using calculated within-person variability scores. Unlike the approach that relies entirely on
SEM, the present method does not assume linearity for observed time-varying confounders at the within-
person level. We emphasize the use of SNMMs with G-estimation because of its property of being doubly
robust to model misspecifications in how observed time-varying confounders are functionally related to
treatments/predictors and outcomes at the within-person level. Through simulation, we show that the pro-
posed method can recover causal parameters well and that causal estimates might be severely biased if one
does not properly account for stable traits. An empirical application using data regarding sleep habits and
mental health status from the Tokyo Teen Cohort study is also provided.

Key words: longitudinal data, observational study, causal inference, marginal structural model, structural
nested mean model.

1. Introduction

Estimating the causal effects of (a sequence of) time-varying treatments/predictors on out-
comes is a challenging issue in longitudinal observational studies because researchers must
account for time-varying and time-invariant confounders. For this analytic purpose, potential
outcome approaches such as marginal structural models (MSMs; Robins, 1999; Robins et al.,
2000) have been widely used in epidemiology. Although actual applications have been relatively
infrequent, structural nested models (SNMs; Robins, 1989, 1992) with G-estimation are in prin-
ciple more suitable and robust for handling violation of the usual assumptions of no unobserved
confounders and sequential ignorability (Robins, 1999; Robins & Hernán, 2009; Vansteelandt &
Joffe, 2014).

Parallel with such methodological development, behavioral science researchers have shown
interest in inferring within-person relations in longitudinally observed variables, namely, how
changes in one variable influence another for the same person. Investigations based on within-
person relations might produce conclusions opposite to those based on between-person relations.
For example, a person ismore likely to have a heart attack during exercise (within-person relation),
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despite people who exercise more having a lower risk of heart attack (between-person relation;
Curran & Bauer, 2011).

Statistical inference for disaggregating within- and between-person (or within- and between-
group) relations has been a concern in behavioral sciences for more than half a century. How-
ever, recent methodological development and extensive discussion (Cole et al., 2005; Hamaker,
2012; Hamaker et al., 2015; Hoffman, 2014; Usami et al., 2019a) have rapidly increased inter-
est in this topic. In the psychometrics literature, along with multilevel modeling (e.g., Wang &
Maxwell, 2015), structural equation modeling (SEM)-based approaches have become one pop-
ular method for uncovering within-person relations. Among these approaches, applications of a
random-intercept cross-lagged panel model (RI-CLPM; Hamaker et al., 2015), which includes
common factors called stable trait factors, have rapidly increased, reaching more than 1500
citations on Google as of June 2022. This model was originally proposed to uncover reciprocal
relations among focal variables that arise at the within-person level (i.e., simultaneous investiga-
tions for the effects of a variable X on a variable Y , along with the effects of Y on X ), without
explicit inclusion of (time-varying) observed confounders L (however, Mulder &Hamaker, 2021)
discussed an extension that included a between-level predictor).

Despite its popularity and theoretical appeal, the concepts of stable traits and within-person
relations in the RI-CLPM have not been fully characterized in the causal inference literature. This
might be partly because psychometricians have used these terms vaguely and ambiguously in
statistical models, without clarifying the assumed data-generating process (DGP) and providing
clear mathematical definitions. For this reason, the RI-CLPM has not been contrasted with many
other methodologies used for causal inference (e.g., MSMs and SNMs). One potential advantage
of the RI-CLPM as SEM is that it can easily include and estimate measurement errors in statistical
models under parametric assumptions. However, the RI-CLPM demands linear regressions at the
within-person level that are correctly specified to link focal variables (as well as time-varying
observed confounders, if included in the model). The linearity assumption typically imposed with
respect to time-varying observed confounders in pathmodeling and SEMhas often been criticized
in the causal inference literature (e.g., Hong, 2015), and relaxing this assumption is often a key
to consistently estimating the causal quantity of interest (e.g., Imai & Kim, 2019).

In this paper, we propose a method of within-person variability score-based causal inference
for estimating joint effects of time-varying continuous treatments/predictors at the within-person
level by controlling for stable traits (i.e., between-person differences), which are assumed to be
uncorrelated with within-person relations as in the RI-CLPM. The proposed method is a two-
step analysis. A within-person variability score for each person, which is disaggregated from the
stable trait factor score of that person, is first calculated using weights based on a best linear
correlation preserving predictor through SEM. Causal parameters are then estimated by MSMs
or SNMs, using calculated within-person variability scores. The proposed method still requires
specification of the structure for within-person variability scores over time for each variable (e.g.,
Y and L) in the first step. However, this approach ismore flexible than the one that relies entirely on
SEM (e.g., the RI-CLPM that includes time-varying observed confounders) in terms of modeling
how time-varying observed confounders are functionally related to treatments/predictors and
outcomes at the within-person level, without imposing the linearity assumption in these relations.
We particularly emphasize the utility of SNMswith G-estimation because of its attractive property
of being doubly robust to model misspecifications in how time-varying observed confounders are
functionally related to treatments/predictors and outcomes at the within-person level.

The proposed method can be viewed as one that synthesizes two traditions for factor analysis
methods and SEM in psychometrics and a method of causal inference (MSMs or SNMs) in epi-
demiology. Because causal estimands that are defined at the within-person level are less common
in the causal inference literature (Lüdtke & Robitzsch, 2021), the proposed method offers new
insights for researchers in a broad range of disciplines who are interested in causal inference.
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Also, the idea of using within-person variability scores can be applied to many other issues that
are closely relevant to causal hypotheses, including reciprocal effects and mediation effects.

The remainder of this paper is organized as follows. Because the concepts of stable traits
and within-person relations have not been fully characterized in the causal inference literature,
in Sect. 2 we start our discussion by introducing the two different DGPs in which time-invariant
factors are included. After providing formal definitions of stable trait factors (for between-person
relations) and within-person variability scores (for within-person relations), the definition of joint
effects of time-varying treatments at the within-person level and their identification conditions
are described in Sect. 3. We then introduce the proposed methodology in Sect. 4. In Sect. 5,
we perform simulations and show that the proposed method can recover causal parameters well,
and that causal estimates might be severely biased if stable traits are not properly accounted for.
Section 6 describes an empirical application of the proposed method using data from the Tokyo
Teen Cohort (TTC) study (Ando et al., 2019). The final section gives some concluding remarks
and discusses our future research agenda.

2. Causal Models and Data-Generating Processes

In this section, we first explain two different DGPs and causal models in which time-invariant
factors are included. In the first DGP, we assume that time-invariant factors have both direct and
indirect effects on measurements; recent work by Gische et al. (2021), which provided a didactic
presentation of the directed acyclic graph (DAG)-based approach and key concepts regarding
causal inference based on a cross-lagged panel design, assumed this process. In the second DGP,
we assume that time-invariant factors have only direct effects; this corresponds to the process
that researchers (implicitly) assume in applying the RI-CLPM to infer within-person relations.
This distinction of processes is inspired by Usami et al. (2019a), who highlighted how common
factors included in the different statistical models to examine reciprocal relations have different
conceptual and mathematical properties.

Below, we suppose that data are generated at fixed time points t0, t1, . . . ,tK . Let Aik denote a
continuous treatment/predictor at time tk (k = 0, . . . , K −1) for person i , and let Lik denote time-
varying observed confounders at that time for person i .1 Furthermore, Yik is the outcome at time tk
(k = 0, . . . , K ) for person i and is part of the time-varying confounders Lik . Suppose that a time-
varying confounder has three characteristics: it is independently associated with future outcomes
Yik′ , it predicts subsequent levels of treatment as well as future confounders, and it is affected by
an earlier treatment and confounders (Vansteelandt & Joffe, 2014). In this paper, for the purpose
of explanation, we assume a single confounder that is measured concurrently with the outcome at
each time point and ismeasured before the treatment/predictor level is determined for each person.
Thus, we presume that the variables are ordered as L0, A0, L1, A1, . . . , LK−1, AK−1, LK .2

2.1. Data-Generating Process 1: Time-Invariant Factors Have Both Direct and Indirect Effects
on Measurements

Gische et al. (2021) introduced the DAG-based approach to causal inference, explaining how
(SEM-based) statistical models can identify the causal models. Figure 1a is a DAG that expresses
linear causal relations among variables in K = 4; this is similar to the one presented by Gische
et al. (2021) but with time-varying observed confounders L now included. Each solid single-
headed arrow represents a direct causal relation, and a dashed double-headed arrow indicates

1Time-invariant observed confounders Li can be included as a special case, but in the DGPs discussed herein, only
time-varying observed confounders Lik are assumed for simplicity.

2Y is not shown explicitly here because it is part of L . We often omit Y in expressing time-varying observed
confounders in this paper.
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the existence of an unobserved confounder. Dashed circles are used to express latent variables.
To keep the illustration simple, here we assume (i) first-order (linear) lagged effects of variables
and (ii) that mechanisms that are not directly targeted by treatment are not altered (modularity).
More importantly, for the purpose of illustration, we temporarily assume that the process does
not start prior to the initial measurement (k = −1,−2, . . . ), indicating that initial measurements
are the beginning of the process. Thus, time-invariant factors η as random intercepts do not have
direct causal effects on the dynamics among variables that might be going on prior to the initial
measurement. We will revisit this issue later.

In this linear causal DAG model, we suppose that time-invariant factors η are additive to
express person-specific differences in the mean levels of the respective variables (Y , A, and
L), which do not change over time. Without loss of generality, we assume that these factors
have zero means (E(η(Y )) = E(η(A)) = E(η(L)) = 0). If we are interested in the longitudinal
change of sleep time in adolescents, as will be investigated in the later empirical example, then η

reflects all time-invariant factors that might affect the level of sleep time in an adolescent during
the course of study (e.g., sex, year of birth, constitution, genetic endowment, health, exercise
habits, home environment including discipline, engagement in club/extracurricular activities in
school). The values of coefficients corresponding to the paths from time-invariant factors to
measurements are restricted to be equal to one. These restrictions (a) assign a scale to the latent
random intercept and (b) reflect the assumption that the structural coefficients from the random
intercepts to measurements do not change over time (Gische et al., 2021). The bidirected dashed
edges between time-invariant factors indicate that they might show covarying relations due to
unobserved confounding. Likewise, the bidirected dashed edge between initial measurements Y0
and L0 indicates that they might show covarying relations due to unobserved confounding.

Under this linear causal DAG model, the DGP can be represented by the following set of
linear equations (k ≥ 1):

Yik = η
(Y )
i + μ

(Y )
k + α

(Y )
k Yi(k−1) + β

(Y )
k Ai(k−1) + γ

(Y )
k Li(k−1) + d(Y )

ik ,

Aik = η
(A)
i + μ

(A)
k + α

(A)
k Yik + β

(A)
k Ai(k−1) + γ

(A)
k Lik + d(A)

ik ,

Lik = η
(L)
i + μ

(L)
k + α

(L)
k Yi(k−1) + β

(L)
k Ai(k−1) + γ

(L)
k Li(k−1) + d(L)

ik . (1)

Here, μ(Y )
k , μ(A)

k , and μ
(L)
k are (fixed) intercepts at time tk and are omitted in the DAG represen-

tation. Residual terms are denoted by d and are assumed to be uncorrelated with time-invariant
factors; they are also usually omitted in the DAG representation. It is also assumed that there
is no unobserved common cause among these residuals (i.e., concurrent residuals are mutually
uncorrelated). Note that the equations assume homogeneity: the coefficients α, β, and γ are fixed
and constant across persons.

As suggested by Gische et al. (2021), a statistical model that captures the DAG depicted
in Fig. 1a (i.e., Eq. 1) can be globally identified: all parameters can theoretically be estimated
uniquely from observational data. Assuming sufficient sample size, correct model specification,
and no excess multivariate kurtosis, the SEM-based maximum likelihood (ML) method provides
estimates that are asymptotically unbiased, efficient, and consistent (Bollen, 1989). More details
about causal identification and estimation in linearly parameterized causal DAG models are pro-
vided by Gische and Voelkle (in press).

A notable feature of this DGP is that time-invariant factors have both direct and indirect
effects on measurements. For example, η(Y ) has a direct effect on Y3 (i.e., η(Y ) → Y3), while Y3
is also caused by Y2, which is again caused by η(Y ) (i.e., η(Y ) → Y2 → Y3). In addition, other
time-invariant factors η(A) and η(L) also have indirect effects on Y3 (e.g., η(A) → A2 → Y3).
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(b) Stable trait factors

Figure 1.
The linear causal diagrams (DAGs) for two different data-generating processes inwhich time-invariant factors are included.
Solid single-headed arrows (directed edges) are labeled with path coefficients that quantify direct causal effects. A dashed
double-headed arrow (bidirected edge) represents a correlation due to an unobserved common cause. Time-invariant factors
are represented in dashed circles, indicating that these are latent variables. For explanatory purposes, it is temporarily
assumed that the process does not start prior to the initial measurement. a Time-invariant factors (η: called accumulating
factors) have both direct and indirect effects on measurements. b Time-invariant factors (I: called stable trait factors) have
only direct effects on measurements.

These indirect effects result from the fact that time-invariant factors are modeled with lagged
regressions in Fig. 1a (or Eq. 1), rather than being modeled separately.

Usami et al. (2019a) compared several existing statistical models to examine reciprocal
relations among variables, emphasizing that whether or not common factors are modeled with
lagged regression makes substantial differences in the conceptual and mathematical roles of
common factors. For example, the common factors included in the latent change score model
(LCS; McArdle & Hamagami, 2001), autoregressive latent trajectory model (ALT; Bollen &
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Curran, 2004), and general cross-lagged panel model (GCLM; Zyphur et al., 2020a; 2020b) and
individual-specific effects that are often included in longitudinal panel models of econometrics
(e.g., dynamic panel model) are commonly modeled with lagged regressions, reflecting that they
have both direct and indirect effects on measurements. This type of common factor is called
an accumulating factor (Usami, 2021; Usami et al., 2019a) because its effects accumulate in
measurements at later time points through the lagged regression. However, in the RI-CLPM (that
includes time-varying observed confounders), which researchers are increasingly using to uncover
within-person relations, common factors (i.e., stable trait factors) are not modeled with lagged
regression, indicating that this statistical model cannot identify parameters in the causal DAG
model as depicted in Fig. 1a (i.e., Eq. 1).

2.2. Data-Generating Process 2: Time-Invariant Factors Have Only Direct Effects on
Measurements

To clarify this point, let us consider a different (linear and first-order) DGP in which time-
invariant factors are included but have only direct effects on measurements. In Fig. 1b, directed
edges from time-invariant factors I are drawn to the corresponding measurements. Also, directed
edges from time-varying factors, which are expressed bywriting the variable namewith an asterisk
(e.g., Y ∗

3 ), are drawn to the corresponding measurements. Directed edges are assumed between
these time-varying factors, rather than between measurements as in Fig. 1a. Time-varying factors
are also assumed to be uncorrelated with time-invariant factors. As a result, time-invariant factors
I have only direct effects onmeasurements, and under the linearity assumption eachmeasurement
can be decomposed into the linear sum of time-invariant and time-varying factors that aremutually
uncorrelated.

The values of coefficients corresponding to the paths from time-varying factors to measure-
ments are all restricted to be one, and we assume that these time-varying factors have zero means.
Under this linear causal DAG model, the DGP can be represented by the following linear equa-
tions (with the assumption of homogeneity of coefficients among persons) that have two major
parts:

Yik = μ
(Y )
k + I (Y )

i + Y ∗
ik, Aik = μ

(A)
k + I (A)

i + A∗
ik, Lik = μ

(L)
k + I (L)

i + L∗
ik (2)

for k ≥ 0, and

Y ∗
ik = α

(Y )
k Y ∗

i(k−1) + β
(Y )
k A∗

i(k−1) + γ
(Y )
k L∗

i(k−1) + d(Y )
ik ,

A∗
ik = α

(A)
k Y ∗

ik + β
(A)
k A∗

i(k−1) + γ
(A)
k L∗

ik + d(A)
ik ,

L∗
ik = α

(L)
k Y ∗

i(k−1) + β
(L)
k A∗

i(k−1) + γ
(L)
k L∗

i(k−1) + d(L)
ik (3)

for k ≥ 1. μ
(Y )
k , μ

(A)
k , and μ

(L)
k are the temporal group means (rather than fixed intercepts) at

time point tk and are omitted in the DAG representation. The residual terms d are assumed to be
uncorrelated with both time-invariant and time-varying factors and are also omitted in the DAG
representation. As suggested from Eq. (2), under these specifications the time-varying factors Y ∗

ik ,
A∗
ik , and L∗

ik represent temporal deviations from the expected score for person i at time point tk
(i.e., μ(Y )

k + I (Y )
i , μ(A)

k + I (A)
i , and μ

(L)
k + I (L)

i ), whereas time-invariant factors represent stable
between-person differences over time. The time series Y ∗

ik , A
∗
ik , and L∗

ik can thus be interpreted
as within-person variations that are uncorrelated from time-invariant factors as stable between-
person differences.
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In psychology, traits were originally considered as personality characteristics that are stable
over time and in different situations. To express such latent constructs, common factors are explic-
itly included in psychometric models. In the context of the RI-CLPM, such common factors are
called stable trait factors, and they have the same role as that of time-invariant factors I in the
linear causal DAGmodel as depicted in Fig. 1b (i.e., Eq. 2). In the RI-CLPM, the initial deviations
are modeled as exogenous variables, and their variances and covariances are estimated. Resid-
uals in this statistical model are usually assumed to follow a multivariate normal distribution.
Although the original motivation for the RI-CLPM was to infer reciprocal (rather than unidirec-
tional) relations and the model does not usually assume time-varying observed confounders L
and higher-order lagged effects of variables, it can be extended in a straightforward manner to
investigate (joint) effects of continuous treatments/predictors A on outcomes Y , while including
L in linear regressions. Therefore, such an extended version of the RI-CLPM as a statistical model
can identify the causal parameters if the assumed DGP as in Fig. 1b (i.e., Eqs. 2 and 3) is correct
and if K ≥ 2 (i.e., three or more time points; Usami et al., 2019a).

Usami et al. (2019a) explained that the conceptual and mathematical roles of common factors
differ according to whether or not they are modeled with lagged regression in the statistical model.
More specifically, in models that include accumulating factors, their influences on measurements
at time tk (e.g., η(Y ) → Yk) transmit to the future measurements (e.g., Yk → Yk+1) through the
lagged regression, which is also influenced by the same accumulating factors (e.g., η(Y ) → Yk+1);
as a result, the magnitudes of impacts from these factors change over time. In contrast, in models
that include stable trait factors (e.g., the RI-CLPM), their impacts are stable over time because they
have only direct effects. In this way, the conceptual meaning and inferential results for (within-
person) relations among variables being modeled differ in each statistical model according to
whether researchers assume the inclusion of accumulating factors or stable trait factors; see
Usami et al. (2019a, pp. 643–644) for a more detailed comparison.

2.3. Implications of Comparing Different DGPs: Control for Time-Invariant Unobserved
Confounders and Initial Conditions

2.3.1. Control for Time-Invariant Unobserved Confounders Aswe have argued, the conceptual
and mathematical roles differ between stable trait factors and accumulating factors. Importantly,
the differences between these factors can also be characterized as whether or not they can be
considered as time-invariant unobserved confounders. For example, the accumulating factors of
outcomes (η(Y )) cause measurements Yk (k ≥ 1) while also being associated with measurements
of treatments/predictor at the previous time point (Ak−1). In this sense, accumulating factors can
be considered as unobserved confounders in evaluating causal effects of treatments/predictors. In
contrast, the stable trait factors of outcomes (I (Y )) also causemeasurementsYk but are uncorrelated
with within-person variations such as Y ∗

k and A∗
k−1. More specifically, when measurements Yk

are unconditional, I (Y ) does not confound the relations among within-person variations (e.g., the
path from A∗

k−1 to Y ∗
k ) because the path from I (Y ) to within-person variations Y ∗

k is blocked by
the measurement Yk , which act as colliders. Therefore, stable trait factors cannot be viewed as
time-invariant unobserved confounders; rather, they should be characterized as merely random
intercepts that are uncorrelated with predictors (i.e., within-person variations). This view differs
from that of Usami et al. (2019a), who explain stable trait factors as time-invariant unobserved
confounders.

If the assumed (linear and first-order) DGP as in Fig. 1b is correct and if all variables are
observable, then controlling for only Y ∗

k−1 and L∗
k−1 is sufficient to evaluate the within-person

relation between A∗
k−1 and Y ∗

k . One could argue that controlling for stable trait factors is not
required to identify causal parameters for treatment effects at the within-person level, the reason
being that within-person processes (time-varying factors) and between-person differences (stable
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trait factors as time-invariant factors) aremutually uncorrelated.However, because all these factors
are actually latent variables and unobservable, we need to use measurements (as colliders) to infer
treatment effects at the within-person level, and appropriate control of stable trait factors as latent
variables is required in the statistical model. If the assumed DGP as in Fig. 1b is correct, then
not controlling for stable trait factors causes biased estimates of causal parameters for the within-
person relation (e.g., Usami et al., 2019b and the later simulations).

2.3.2. Initial Conditions How to treat the initial measurements (i.e., Y0, L0, and A0) is also
important for distinguishing between the two DGPs in Fig. 1. Special attention needs to be paid
to the initial measurements because there are no incoming directed edges to these variables from
variables prior to the initial time point (k = −1,−2, . . . ). Although we have assumed so far that
the DGP does not start prior to the initial measurements, this assumption is not realistic in many
applications, and the initial measurements must somehow account for the past of the process that
is not explicitly modeled (see Fig. S1 in the Online Supplemental Material for more details).
Assuming a DGP similar to that in Fig. 1a, Gische et al. (2021, Fig. 5) provided a straightforward
and interpretable approach that freely estimates the coefficients (loading) from η to all initial
measurements. For example, for η(Y ), the coefficients from this factor to Y0, L0, and A0 are
freely specified rather than being fixed to either one or zero. In applying dynamic panel models
in econometrics, one usually assumes that individual-specific components (i.e., accumulating
factors) are correlated with the initial measurements to account for the past of the process.

Importantly, if the second DGP (Fig. 1b) is correct, then such special considerations are
not required. This is because time-invariant factors I have only direct effects on measure-
ments (rather than on temporal deviations as within-person variations) and no directed edges are
assumed between observed variables. In other words, past time-varying factors (Y ∗−1,Y

∗−2, . . . ,
A∗−1, A

∗−2, . . . , L
∗−1, L

∗−2, . . . ) as variations in within-person processes cause observed variables
separately from I as stable between-person differences (see also Fig. S1 in the Online Sup-
plemental Material). Therefore, if the assumed DGP as depicted in Fig. 1b is correct, then the
RI-CLPM, which includes time-varying observed confounders and assumes that initial variables
at the within-person level (Y ∗

0 , L
∗
0) are exogenous (and are mutually correlated) and that loadings

from I to the corresponding initial measurements (i.e., I (Y ) → Y0, I (A) → A0 and I (L) → L0)
are all set to one, can identify causal parameters for treatment effects, even if the DGP actually
starts prior to the initial measurements.

2.4. Summary and Discussion

The critical difference between the two different DGPs in Fig. 1 is whether the assumed time-
invariant factors have only (stable) direct effects (i.e., stable trait factors) or both direct and indirect
effects onmeasurements (i.e., accumulating factors). Because of this difference, stable trait factors
as merely random intercepts cannot be viewed as time-invariant unobserved confounders, while
special considerations for initial measurements are not required if the assumed DGP includes only
stable trait factors (i.e., Fig. 1b). Although researchers are increasingly using the RI-CLPM as a
statistical model to uncover within-person relations, stable traits and (implicitly) assumed DGPs
have not been fully characterized in the causal inference literature. Below, we assume a DGP that
includes stable trait factors as in Fig. 1b and also assume that measurements can be decomposed
into the linear sum of time-invariant factors (i.e., stable traits) and time-varying factors (i.e.,
within-person variability scores) that are mutually uncorrelated. The proposed method of within-
person variability score-based causal inference for (joint) effects of time-varying treatments at
the within-person level can be effectively applied if such a DGP can be assumed. The proposed
approach ismore flexible than the one that relies entirely on SEM (e.g., the RI-CLPM that includes
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time-varying observed confounders) in terms of the linearity assumption regarding observed
confounders at the within-person level.

A causal DAG represents a researcher’s theory about the causal process and should be drawn
based on subject-matter knowledge. However, in many cases, researchers do not exactly know
the true DGP and how time-invariant factors (if they exist) influence measurements (e.g., linearly
or nonlinearly, directly or indirectly, or both). Although it is ideal if one can unambiguously
articulate the theoretically derived expected relations for variables, this can be quite challenging
in practical applications (Curran & Bauer, 2011). If linear SEM-based statistical models are used,
then as a data-driven approach one could comparemodel fit indices between two statistical models
that appropriately represent the causal models of Eq. (1) and Eqs. (2) and (3) (i.e., the RI-CLPM
that includes time-varying observed confounders), and this would be useful for investigating the
sensitivity of the conclusions.

In the context of applying the RI-CLPM, Lüdtke and Robitzsch (2021) argued that including
stable trait factors might be better suited for short-term studies that typically use shorter time lags
between time points. In short-term studies, one might be more certain that there are no indirect
effects from time-invariant factors (i.e., only stable trait factors exist). Even if a researcher is
certain that stable trait factors exist, they might not be additive and/or might be correlated with
within-person variability scores if they share common causes (e.g., genotype; see also McNeish
and Kelly Muthén and Asparouhov (2019), who discussed the issue of endogeneity in applying
mixed-effects models). This indicates that the model fails to perfectly disentangle the within- and
between-person relations. Also, if time-invariant unobserved confounders (rather than random
intercepts that merely represent between-person differences as stable trait factors) are likely to be
present, then other statistical approaches that account for such confoundersmight bemore suitable.
However, in our opinion there are no clear criteria that delineate when and how to include (time-
invariant) factors in the assumed DGP, and continued discussion that also considers empirical
investigations of each research hypothesis and sensitivity of results (e.g., the later simulations)
will be required in the future.

3. Formal Definitions of Stable Trait Factors, Within-Person Variability Scores and Joint Effects
of Time-Varying Treatments

3.1. Definitions of Stable Trait Factors and Within-Person Variability Scores

The terms “(stable) traits” and “within-person relations” have been used vaguely and ambigu-
ously in statistical models, despite the existence of mathematical and interpretative differences
among models (e.g., Usami et al., 2019a). Inspired by the discussion so far, we provide the formal
definitions of these below.

A stable trait factor of person i (say, for Y ) is defined in this paper as (i) the time-invariant
factor that has additive influence on measurements, and (ii) its quantity is equal to the difference
between the expected value of measurement (i.e., true score) of this person at time point tk
(expressed as T (Y )

ik ) and the temporal group mean (μ(Y )
k ), which is invariant over time:

I (Y )
i = T (Y )

ik − μ
(Y )
k (4)

for k = 0, . . . , K , −∞ < T (Y )
ik < ∞, and −∞ < μ

(Y )
k < ∞. Note that E(I (Y )

i ) = E(T (Y )
ik −

μ
(Y )
k ) = μ

(Y )
k − μ

(Y )
k = 0.

Next, the within-person variability score Y ∗
ik is defined as (i) a time-varying factor that has

additive influence on measurements, and (ii) its quantity is equal to the difference between a
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measurement and its expected value:

Y ∗
ik = Yik − T (Y )

ik = Yik − (μ
(Y )
k + I (Y )

i ), (5)

with the assumptions of E(Y ∗
ik) = 0 and independence between T (Y )

ik and Y ∗
ik . From this formu-

lation, stable trait factors and within-person variability scores are uncorrelated because

Cov(I (Y )
i ,Y ∗

ik) = E[(T (Y )
ik − μ

(Y )
k )Y ∗

ik] = E(T (Y )
ik Y ∗

ik) − μ
(Y )
k E(Y ∗

ik) = 0. (6)

Thus, variances of measurements at time point tk can be expressed as the sum of those of stable
trait factor scores and within-person variability scores. This means that the time series for within-
person variability scores have the following covariance structure:

Cov(Y ∗
ik,Y

∗
ik′) = Cov(Yik,Yik′) − Var(I (Y )

i ). (7)

In this paper, we use the terms within-person relation and between-person relation to describe
the relations between variables that are based on within-person variability scores and stable trait
factor scores, respectively.

3.2. Definition of Joint Effects of Time-Varying Treatments at the Within-Person Level

Next, we explain the definition of joint (causal) effects of treatments at the within-person
level using the potential outcome approach. We assume a similar causal DAG model to that
in Fig. 1b: (i) measurements are expressed by the linear sum of stable trait factors and within-
person variability scores, and (ii) within-person variability scores are expressed by functions (with
assumption of homogeneity) of those in past time. However, unlike the presentation in Sect. 2,
we relax some assumptions about the within-person variability scores to allow the following: (a)
higher-order lagged effects and interaction effects of treatments/predictors can exist at the within-
person level, and (b) time-varying observed confounders can be nonlinearly relatedwith outcomes
and treatments/predictors at the within-person level. The current focus is on evaluating the within-
person relation between variables, that is, how the (joint) intervention of treatments/predictors
influences future outcomes at the within-person level.

Below, we use overbars Ȳ ∗
k = {Y ∗

0 ,Y ∗
1 , . . . ,Y ∗

k } to denote the history of Y ∗ through tk

and underbars Y ∗
k = {Y ∗

k , . . . ,Y ∗
K } to denote the future of this variable. Let Y ∗

ik
Ā∗
i(k−1) (k =

1, . . . , K ) denote the within-person variability score for the outcome that would take at time
point tk for person i were this person to receive treatment history at the within-person level
Ā∗
i(k−1) = {A∗

i0, . . . , A
∗
i(k−1)} through tk−1. Here, A∗

ik = 0 (k = 0, . . . , K − 1) indicates that
the amount of treatments/predictors for person i is equal to the expected score of this person at

time point tk (i.e., Aik = μ
(A)
k + I (A)

i ). Y ∗
ik

Ā∗
i(k−1) is a potential outcome, which we connect to the

within-person variability score by the consistency assumption

Y ∗
ik = Y ∗

ik
ā∗
i(k−1) (8)

if Ā∗
i(k−1) = ā∗

i(k−1); otherwise, Y
∗
ik
ā∗
i(k−1) is counterfactual. Note that Y ∗

ik is a latent variable and
unobservable, while potential outcomes for measurements (i.e., observed variables) are assumed
in the standard potential outcome approach.
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In potential outcome approach, causal effect refers to a contrast between potential outcomes
under different treatment values. Therefore, for each causal effect, we can imagine a (hypothetical)
randomized experiment to quantify it (i.e., target trial; Hernán & Robins, 2021). For example,
(average) causal effect on Y ∗

ik when a continuous treatment/predictor A∗
i(k−1) increases one unit

from the reference value a∗r
i(k−1) at time tk−1 can be expressed as

E(Y ∗
ik
ā∗
i(k−2),a

∗r
i(k−1)+1 − Y ∗

ik
ā∗
i(k−2),a

∗r
i(k−1) ) = E(Y ∗

ik
ā∗
i(k−2),a

∗r
i(k−1)+1

) − E(Y ∗
ik
ā∗
i(k−2),a

∗r
i(k−1) ). (9)

The standard assumption of no unobserved confounders or sequential ignorability indicates that

Y ∗
ik
ā∗
i(k−2),0 ⊥⊥ A∗

i(k−1)|L̄∗
i(k−1), Ā

∗
i(k−2) = ā∗

i(k−2). (10)

Here, (ā∗
i(k−2), 0) is the counterfactual history, that is, the history that agrees with ā

∗
i(k−2) through

time tk−2 and is zero thereafter. Along with the assumed causal DAG above as well as consis-
tency and sequential ignorability, we impose the stable unit treatment value assumption (SUTVA;
no unmodeled spillovers, e.g., Hong, 2015) and assumptions of positivity (i.e., the probability
of receiving each level of treatment conditional on past confounders and treatments is greater
than zero) and modularity. Under these assumptions, the average causal effect in Eq. (9) can
be expressed using the difference in conditional means given information on confounders and
treatment history as

E(Y ∗
ik
ā∗
i(k−2),a

∗r
i(k−1)+1

) − E(Y ∗
ik
ā∗
i(k−2),a

∗r
i(k−1) )

= E(Y ∗
ik |L̄∗

i(k−1), Ā
∗
i(k−2) = ā∗

i(k−2), A
∗
i(k−1) = a∗r

i(k−1) + 1)

− E(Y ∗
ik |L̄∗

i(k−1), Ā
∗
i(k−2) = ā∗

i(k−2), A
∗
i(k−1) = a∗r

i(k−1)). (11)

In other words, the causal effect of treatment A∗r
i(k−1) at the within-person level can be evaluated

by the difference in conditional means of Y ∗
ik between persons who receive A∗

i(k−1) = a∗r
i(k−1) + 1

(i.e., treatment levels that are a∗r
i(k−1) +1 larger than their expected scores μ

(A)
(k−1) + I (A)

i ) and who
receive A∗

i(k−1) = a∗r
i(k−1), given information on confounders and treatment history.

Similarly, the average joint (causal) effects of a sequence of treatments/predictors Ā∗
i(k−1) on

Y ∗
ik when they increase one unit from the reference values ā∗r

i(k−1) can be expressed as

E(Y ∗
ik
ā∗r
i(k−1)+1

) − E(Y ∗
ik
ā∗r
i(k−1) )

= E(Y ∗
ik |L̄∗

i(k−1), Ā
∗
i(k−1) = ā∗

i(k−1) + 1) − E(Y ∗
ik |L̄∗

i(k−1), Ā
∗
i(k−1) = ā∗

i(k−1)) (12)

As a simple example, suppose K = 2 and that the DGP can be represented by linear and first-
order models as in Eqs. (2) and (3) (assuming homogeneity and no interaction effects of treat-
ments/predictors). Then, a conditional mean E(Y ∗

i2|L̄∗
i1, Ā

∗
i1 = ā∗

i1) at k = 2 can be expressed as
the linear (weighted) sum of the terms a∗

i0 and a
∗
i1:

E(α
(Y )
2 Y ∗

i1 + β
(Y )
2 a∗

i1 + γ
(Y )
2 L∗

i1 + d(Y )
i2 )

= α
(Y )
2 (α

(Y )
1 E(Y ∗

i0) + β
(Y )
1 a∗

i0 + γ
(Y )
1 E(L∗

i0)) + β
(Y )
2 a∗

i1 + γ
(Y )
2 (α

(L)
1 E(Y ∗

i0) + β
(L)
1 a∗

i0 + γ
(L)
1 E(L∗

i0))
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= [α(Y )
2 (α

(Y )
1 E(Y ∗

i0) + γ
(Y )
1 E(L∗

i0)) + γ
(Y )
2 (α

(L)
1 E(Y ∗

i0) + γ
(L)
1 E(L∗

i0))]
︸ ︷︷ ︸

0

+ [α(Y )
2 β

(Y )
1 + γ

(Y )
2 β

(L)
1 ]

︸ ︷︷ ︸

β20

a∗
i0 + β

(Y )
2

︸︷︷︸

β21

a∗
i1

= β20a
∗
i0 + β21a

∗
i1. (13)

From this result, joint (causal) effects of treatments A∗
i0 and A∗

i1 when increasing one unit from
the reference values a∗r

i0 and a∗r
i1 become (β20(a∗r

i0 + 1) + β21(a∗r
i1 + 1)) − (β20a∗r

i0 + β21a∗r
i1 ) =

β20+β21 = α
(Y )
2 β

(Y )
1 +γ

(Y )
2 β

(L)
1 +β

(Y )
2 .Note that β20 (the effect of intervention A∗

0 = a∗
0 on Y

∗
2 )

can also be evaluated by tracing the two paths a∗
0 → Y ∗

1 → Y ∗
2 (= α

(Y )
2 β

(Y )
1 ) and a∗

0 → L∗
1 → Y ∗

2

(= γ
(Y )
2 β

(L)
1 ) that start at A∗

0(= a∗
0) and end at Y ∗

2 in Fig. 1b.3 Likewise, E(Y ∗
i1|L∗

i0, A
∗
i0 = a∗

i0)

at k = 1 can be expressed as

E(α
(Y )
1 Y ∗

i0 + β
(Y )
1 a∗

i0 + γ
(Y )
1 L∗

i0) = [α(Y )
1 E(Y ∗

i0) + γ
(Y )
1 E(L∗

i0)]
︸ ︷︷ ︸

0

+ β
(Y )
1

︸︷︷︸

β10

a∗
i0 = β10a

∗
i0, (14)

thus the causal effect of treatment A∗
i0 when increasing one unit from the reference values a∗r

i0 at

the within-person level becomes β10 = β
(Y )
1 , which is equivalent to the so-called cross-lagged

parameter in Eq. (3).
From Eqs. (5) and (6) (i.e., stable trait factors are uncorrelated with within-person variability

scores), we have the relation E(Y ∗
ik |L̄∗

i(k−1), Ā
∗
i(k−1) = ā∗

i(k−1))=E(Yik |I (Y )
i , I (L)

i , I (A)
i , L̄∗

i(k−1),

Ā∗
i(k−1) = ā∗

i(k−1)) − (μ
(Y )
k + I (Y )

i ). Because μ
(Y )
k + I (Y )

i is the term that is not associated with
treatments at the within-person level, it can be shown that

E(Y ∗
ik |L̄∗

i(k−1), Ā
∗
i(k−1) = ā∗

i(k−1) + 1) − E(Y ∗
ik |L̄∗

i(k−1), Ā
∗
i(k−1) = ā∗

i(k−1))

= E(Yik |I (Y )
i , I (L)

i , I (A)
i , L̄∗

i(k−1), Ā
∗
i(k−1) = ā∗

i(k−1) + 1)

− E(Yik |I (Y )
i , I (L)

i , I (A)
i , L̄∗

i(k−1), Ā
∗
i(k−1) = ā∗

i(k−1)). (15)

The right side of the equation can be interpreted as person-specific joint (causal) effects in the
sense that it accounts for stable traits of persons (I (Y )

i ). Therefore, joint (causal) effects of A∗ on
Y ∗ (i.e., Eq. 12; at the within-person level) can be interpreted as person-specific joint (causal)
effects on Y under the assumed linear causal DAG such as in Fig. 1b.

3.3. Identification Conditions for Causal Parameters

So far, we have assumed a causal DAG model that is similar to that shown in Fig. 1b. In
the proposed method, the assumptions for identifying parameters for joint (causal) effects can
now be summarized as (i) measurements (K ≥ 2) are expressed by the linear sum of stable
trait factors and within-person variability scores that are mutually uncorrelated, (ii) within-person
variability scores are expressed by functions (with assumption of homogeneity) of those in past
time, (iii) consistency, (iv) sequential ignorability, (v) SUTVA, (vi) positivity, (vii) modularity,
and (viii) multivariate normality (if MLE is used in the first step). The proposed method can be
used effectively in applications in which these assumptions are met.

3 Here, the path a∗
0 → a∗

1 → Y ∗
2 does not need to be accounted for because time-varying treatments are now

intervened and a∗
1 does not depend on a∗

0 ).



SATOSHI USAMI

Regarding the second assumption, if K ≥ 2 and the DGP can be represented by linear
(and first-order) equations such as in Eqs. (2) and (3) (assuming homogeneity and no interaction
effects of treatments/predictors), then in this special case, the RI-CLPM (that includes time-
varying observed confounders) as a statistical model can identify parameters for joint (causal)
effects. However, the linearity assumption that is typically imposed for time-varying observed
confounders and outcomes (and treatments/predictors) in path modeling and SEM (including the
RI-CLPM) has often been criticized in the causal inference literature (e.g., Hong, 2015), and
relaxing this assumption is often key to consistently estimating the causal quantity of interest
(e.g., Imai & Kim, 2019). In addition, ensuring a correct specification in terms of the linearity is
very challenging in that many equations must be diagnosed in longitudinal designs.

As we will see, the proposed method still requires specifications of the structure for within-
person variability scores over time in each variable (Y , A, and L in the first step) as well as
parametric models for treatments and outcomes at the within-person level (in the second step).
However, the assumption of linearity is not required for these parametric models in MSMs and
SNMs, and inMSMs one does not need to model the relation between outcomes and time-varying
observed confounders (at thewithin-person level) because it is themeans of potential outcomes that
are marginalized over these confounders that are of concern. Notably, SNMs with G-estimation
have the property of being doubly robust tomodel misspecifications in how time-varying observed
confounders are functionally related to treatments and outcomes (at the within-person level).

4. Proposed Methodology

We are now ready to introduce a method of within-person variability score-based causal
inference for estimating joint effects of time-varying continuous treatments, assuming that the
above conditions for identification are satisfied. The proposed method consists of a two-step
analysis. First, within-person variability scores are calculated using weights through SEM that
models only the measurement parts that include stable trait factors. Then, causal parameters are
estimated by MSMs or SNMs, using the scores calculated in the first step. This approach is
more flexible than the one that relies entirely on SEM (e.g., the RI-CLPM that includes time-
varying observed confounders) in terms of modeling how time-varying observed confounders
are functionally related to treatments/predictors and outcomes at the within-person level, without
imposing the linearity assumption in these relations. Before explaining the proposedmethodology,
we briefly discuss the motivation for adopting a two-step method, rather than simultaneously
estimating stable trait factors (or within-person variations) and causal parameters.

In general, partial misspecification in measurements and/or structural models is known to
cause large biases in estimates of model parameters. In the present context, when a simultaneous
estimation procedure such as the RI-CLPM is used, misspecification in the structural models
at the within-person level may greatly affect parameter estimates in the measurement model
((co)variances of stable factors and within-person variability scores), and vice versa.

To avoid such confounding in interpreting the estimation results, in the SEMcontextAnderson
andGerbing (1988) proposed a two-step procedure that first confirms themeasurementmodelwith
a saturated model, so that structural relations have no impact on the measurement model. Then,
using an appropriate measurement model, the substantive structural relations model of interest is
added (Hoshino & Bentler, 2013). Applications of similar multistep estimation procedures can
be seen for diverse classes of latent variable models (Bakk & Kuha, 2017; Croon, 2002; Skrondal
& Laake, 2001; Vermunt, 2010).

Another potential advantage of two-step estimation is its feasibility.MSMs and SNMs usually
do not assume common factors, and the optimization procedure for these models is different
from that in SEM. For this reason, fully customized programming is required if performing
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simultaneous estimation. However, in two-step estimation, parameters in measurement models
can be estimated in the first step through various software packages for SEM, including Amos,
SAS PROC CALIS, R packages (sem, lavaan, OpenMx), LISREL, EQS, and Mplus. MSMs and
SNMs can be straightforwardly applied just by using calculated within-person variability scores
instead of measurements.

Two-step estimation is also advantageous because it poses less risk of improper solutions. This
problem is encountered relatively oftenwhen applying the RI-CLPMbecause of negative variance
parameters and a singular approximate Hessian matrix for stable trait factor variance–covariance
(e.g., Usami et al., 2019a), which is likely caused by misspecifications in linear regressions (i.e.,
the structural model). We will separately estimate stable trait factors for each variable (Y , A,
and L) without influence from specified structural models, thus minimizing the risk of improper
solutions.

4.1. Step 1: Estimation of Stable Trait Factors and Prediction of Within-Person Variability
Scores

The first step of our method is divided into two sub-steps: (i) specification of themeasurement
models and parameter estimation and (ii) prediction of within-person variability scores.

4.1.1. Specification of the Measurement Models and Parameter Estimation As stated earlier,
we assume that measurements are expressed by the linear sum of stable trait factors and within-
person variability scores that are mutually uncorrelated, as in Eq. (2). This equation can be viewed
as a factor analysis model that includes a single common factor I (whose factor loadings are all
one)4 and a unique factor as temporal deviations. In vector notation, the causal model of Eq. (2)
for outcome Y becomes

Yi = μ(Y ) + I (Y )
i 1K+1 + Y ∗

i , (16)

where μ(Y ) is a (K + 1) × 1 mean vector, E(I (Y )
i ) = 0, Var(I (Y )

i ) = φ2
(Y ), E(Y ∗

i ) = 0, and

Cov(I (Y )
i ,Y ∗

i ) = 0. We denote as �(Y ) a (K + 1) × (K + 1) variance–covariance matrix of
within-person variability scores. This implies that the variance–covariance matrix of Y (denoted
as �(Y )) is of the form �(Y ) = φ2

(Y )1K+11tK+1 + �(Y ).
Unlike the standard factor analysis model, �(Y ) has a dependence structure and is not diag-

onal. Therefore, in using SEM to estimate the parameters in Eq. (16), some structure—such as
compound symmetry, a Toeplitz structure, or a (first-order) autoregressive (AR) structure—must
be specified in �(Y ) for model identification. When the model is correctly specified, consistent
estimators for μ(Y ), φ2

(Y ), and �(Y ) can be obtained by MLE in SEM (Jöreskog & Lawley, 1968).
In SEM, missing values can be easily handled by full information maximum likelihood

(Enders & Bandalos, 2001) with the assumption of missing at random (MAR; Rubin, 1976). If
data are suspected to be missing not at random (MNAR), then appropriate sensitivity analyses
and/or multiple imputation should be considered (Resseguier et al., 2011). Models that account
for MNAR can be easily estimated in popular software packages for SEM (see Enders, 2011;
Newsom, 2015).

Another advantage of SEMis that validity of the specifiedmodel canbediagnosedviamultiple
model fit indices, along with model comparisons using information criteria. In this paper, we use

4Although we defined stable trait factors as the (time-invariant) difference between the expected value of a given
person’s measurement and the temporal group mean, one could argue for another definition that allows for time-varying
influences on measurements. If this is the case, time-varying factor loadings can be freely specified in this step (except for
one fixed factor loading for identification). However, there may be some cost in that the minimum number of time points
required to identify the measurement model becomes larger than that in specifying time-invariant loadings.
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three current major indices (e.g., Hu & Bentler, 1999; Kline, 2016): (a) the comparative fit index
(CFI), (b) the root-mean-square error of approximation (RMSEA), and (c) the standardized root-
mean-square residual (SRMR).

Similarly, we also set measurement models for treatments/predictors A and observed con-
founders L separately in this sub-step, then estimate parameters for mean vectors (μ(A) andμ(L)),
stable trait factor variances (φ2

(A) and φ2
(L)), and variance–covariance matrices of within-person

variability scores �(A) and �(L).

4.1.2. Predicting Within-Person Variability Scores Let Xi = (Yi , Ai , Li )
t and X∗

i =
(Y ∗

i , A∗
i , L

∗
i )

t be vectors of measurements and within-person variability scores, respectively, and
let μ = (μ(Y ), μ(A), μ(L))t be a mean vector. Also let � and � be covariance matrices for
measurements Xi and within-person variability scores X∗

i .

We consider linear prediction of within-person variability scores X̂∗
i under the condition that

� and� are known. Consider a (3K +1)×(3K +1)weight matrixW that provides within-person
variability scores from measurements as

X̂∗
i = Wt (Xi − μ), (17)

satisfying the relation

E(X̂∗
i X̂

∗t
i ) = Wt E[(Xi − μ)(Xi − μ)t ]W = Wt�W = �. (18)

Unlike standard applications of factor analysis, we are interested in predicting within-person
variability (unique factor) scores, rather than stable trait factor (common factor) scores. However,
the current problem of determining weights W shares the similar motivation of predicting factor
scores. In the factor analysis literature, a predictor that preserves the covariance structure of
common factors has been developed as a linear correlation preserving predictor (Anderson &
Rubin, 1956; Green, 1969; ten Berge et al., 1999).

With this point in mind, W that can provide the best linear predictor of X̂∗
i minimizing

the risk function, defined as the trace of a residual covariance matrix (i.e., mean squared error
MSE(X̂∗

i )=E[(X̂∗
i −X∗

i )
t (X̂∗

i −X∗
i )]), which also satisfies the relation in Eq. (18), can be obtained

by utilizing singular value decomposition as

Wt = �1/2(�3/2�−1�3/2)
−1/2

�3/2�−1. (19)

Here, for a positive (semi)definite matrix C , we denote as C1/2 the positive (semi)definite matrix
such that its square equals C . Matrices C−1/2 and C3/2 are the inverse (if it exists) and the third
power of C1/2, respectively. A derivation of W is provided in the Online Supplemental Material.

We use the sample means X̄ and covariance matrix S of X as estimators of μ and �. As
implied from the relation in Eq. (7), we use estimated stable trait factor variances to estimate �

as

�̂ = S − 	̂+, (20)

where 	̂+ consists of estimated stable trait factor (co)variances. In the simple case where the
initial measurement of Y (Y0) is missing and the number of measurements equals K for each
variable, 	̂+ becomes
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	̂+ = 	̂ ⊗ 1K 1
t
K =

⎛

⎜

⎝

φ̂2
(Y ) φ̂(Y,A) φ̂(Y,L)

φ̂(Y,A) φ̂2
(A) φ̂(A,L)

φ̂(Y,L) φ̂(A,L) φ̂2
(L)

⎞

⎟

⎠ ⊗ 1K 1
t
K , (21)

where 	̂ is an estimator of a 3×3 stable trait factor covariancematrix	. Because stable trait factor
covariances are not estimated in the previous sub-step, we use covariances between calculated
linear correlation preserving predictors for variables. For example, this predictor for Y can be
expressed as

Î (Y )
i = φ̂(Y )

√

1tK+1�̂
−1
(Y )1K+1

1tK+1�̂
−1
(Y )(Yi − Ȳ ). (22)

Î (A)
i and Î (L)

i can be calculated in the samemanner, whereby we obtain φ̂(Y,A) = Cov( Î (Y )
i , Î (A)

i ),

φ̂(Y,L) = Cov( Î (Y )
i , Î (L)

i ), and φ̂(A,L) = Cov( Î (A)
i , Î (L)

i ). Predictors Îi = ( Î (Y )
i , Î (A)

i , Î (L)
i )t

satisfy the relation E( Îi Î ti ) = 	 if the model is correctly specified in the previous sub-step. From

Eqs. (17) and (19)–(21), we can thus obtain X̂∗
i without specifying the structural models that

connect within-person variability scores from different variables (Y ∗, A∗, and L∗), successfully
maintaining independence from the next step.

4.2. Applying MSMs and SNMMs

The second step of the proposed method is straightforward, because we just need to apply
MSMs or SNMs using calculated within-person variability scores. Robins and co-workers devel-
oped SNMs with G-estimation (Robins, 1989; Robins et al., 1992) and MSMs with an inverse
probability weight (IPW) estimator (Robins, 1999; Robins et al., 2000). These methods have been
extended to treat clustered outcomes (e.g., Brumback et al., 2014; He et al., 2015, 2019). However,
(joint) causal effects under the control of stable trait factors have not been investigated in this area
because inference for stable traits and within-person relations has been an issue in the psychome-
tric and behavioral science literature, and these concepts have yet to be fully characterized in the
causal inference literature.

MSMs are advantageous in that they can be easily understood and fit with standard, off-the-
shelf software that allows for weights (e.g., He et al., 2019; Vansteelandt & Joffe, 2014). However,
it is well known thatMSMs can be highly sensitive tomisspecification of the treatment assignment
model, even when there is a moderate number of time points (e.g., Hong, 2015; Lefebvre et al.,
2008). Imai and Ratkovic (2015) proposed a covariate balancing propensity score methodology
for robust IPW estimation.

Because of the attractive property of being doubly robust in G-estimators, SNMs are a bet-
ter approach for handling violation of the usual assumptions of no unmeasured confounders or
sequential ignorability (Vansteelandt & Joffe, 2014). In addition, SNMs can allow direct modeling
of the interactions and moderation effects of treatments/predictors A with observed confounders
L . Another advantage of SNMs is that the variance of locally efficient IPW estimators in MSMs
exceeds that of G-estimators in SNMs, unless A and L are independent. We therefore emphasize
the utility of SNMs in this paper. Because we are now interested in evaluating the joint effects of
treatments on the mean of an outcome, rather than those on the entire distribution of the outcome,
we apply structural nested mean models (SNMMs; Robins, 1994).

Note that potential disadvantages of SNMs are their limited utility for G-estimation when
applying logistic SNMs and their limited availability of off-the-shelf software. Regarding the
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latter point, Wallace, Moodie, and Stephens (2017) developed an R package for G-estimation of
SNMMs.

4.2.1. MSMs Using Within-Person Variability Scores MSMs are typically applied to evaluate
the joint effects of a sequence of treatments on the outcome, which is measured only at the end of
a fixed follow-up period (tK ). For generality of discussion, as before we assume that the outcome
is measured each time and that the primary interest is evaluation of effects of a sequence of past
treatments on the outcome at each time point.

MSMs consider the marginal mean of potential outcomes that are marginalized over the
observed confounders L . In the current context, we consider potential outcomes at the within-

person level, namely, E(Y ∗
ik

Ā∗
i(k−1) ) with treatment history Ā∗

i(k−1) = ā∗
i(k−1). E(Y ∗

ik
Ā∗
i(k−1) ) might

take the form

E(Y ∗
ik

Ā∗
i(k−1) ) =

k
∑

t=1

βk(t−1)A
∗
i(t−1) (23)

with k = 1, 2, . . . , K .5 The average joint (causal) effects of Ā∗
i(k−1) on Y ∗

ik when increasing

one unit from the reference values in each treatment become
∑k

t=1 βk(t−1). Parameters τ =
(βk0, βk1, . . . , βk(k−1))

t can be estimated by fitting a weighted conditional model with an IPW
estimator. One useful option for calculating weights is to use stabilized weights wik for person i
at time point tk (Hernán et al., 2002) as

wik =
k−1
∏

t=1

f (A∗
i t |A∗

i(t−1))

f (A∗
i t |A∗

i(t−1), L
∗
i t )

, (24)

where f (A∗
i t |A∗

i(t−1), L
∗
i t ) > 0 for all A∗

i t , if f (A∗
i(t−1), L

∗
i t ) 	= 0 (the positivity assumption).

Parameters will be biased if the treatment assignment model f (A∗
i t |A∗

i(t−1), L
∗
i t ) is misspecified,

but misspecification of f (A∗
i t |A∗

i(t−1)) does not result in bias. InMSMs, unlike the RI-CLPM (that
includes L), one does not need tomodel the relation between outcomes and time-varying observed
confounders at the within-person level because marginal (joint) effects of treatments/predictors
are the primary focus in applying this method. Also, one can allow a nonlinear relation between
treatments/predictors and confounders in the treatment assignment model f (A∗

i t |A∗
i(t−1), L

∗
i t ),

although estimates are sensitive to this model misspecification.

4.2.2. SNMMs Using Within-Person Variability Scores SNMMs simulate the sequential
removal of an amount (blip) of treatment at tk−1 on subsequent average outcomes, after hav-
ing removed the effects of all subsequent treatments. SNMMs then model the effect of a blip in
treatment at tk−1 on the subsequent outcome means while holding all future treatments fixed at a
reference level 0 (Vansteelandt & Joffe, 2014); in other words, the level that is equal to expected
scores of a person in the current context.

SNMMs parameterize contrasts of Y ∗ā∗
i(k−1),0

ik and Y ∗āi(k−2),0
ik conditionally on treatments/

predictors and confounder histories through t(k−1) as

5Here, an intercept becomes zero. Other terms such as quadratic effects (e.g., A∗2
ik ) for time-varying treatments can

be included in MSMs. Also, one can include observed covariates/nonconfounders to assess effect modification (Hernán
& Robins, 2021).
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g[E(Y ∗ā∗
i(k−1),0

ik |L̄∗
i(k−1) = l̄∗i(k−1), Ā

∗
i(k−1) = ā∗

i(k−1))] − g[E(Y ∗ā∗
i(k−2),0

ik |L̄∗
i(k−1) = l̄∗i(k−1), Ā

∗
i(k−1) = ā∗

i(k−1))]
= hk (l̄

∗
i(k−1), ā

∗
i(k−1); τ) (25)

for each k = 1, . . . , K , where g(·) is a known link function, and hk(l̄∗i(k−1), ā
∗
i(k−1); τ) is a known

(K − k + 1)-dimensional function, smooth in the finite-dimensional parameter τ (Vansteelandt
& Joffe, 2014).

In the following empirical applications using the data of K = 2, a linear SNMM using the
identity link g(x) = x is given by

E(Y ∗
i2
ai0,ai1 − Y ∗

i2
ai0,0|L̄∗

i1 = l̄∗i1, Ā∗
i1 = ā∗

i1) = (β21 + γ21l
∗
i1)a

∗
i1,

E(Y ∗
i2
ai0,0 − Y ∗

i2
0,0|L∗

i0 = l∗i0, A∗
i0 = a∗

i0) = (β20 + γ20l
∗
i0)a

∗
i0,

E(Y ∗
i1
ai0,0 − Y ∗

i1
0,0|L∗

i0 = l∗i0, A∗
i0 = a∗

i0) = (β10 + γ10l
∗
i0)a

∗
i0. (26)

Here, the first equation models the effect of A∗
i1 on Y ∗

i2, the second models the effect of A∗
i0 on

Y ∗
i2, and the third models the effect of A∗

i0 on Y ∗
i1. The (conditional) average joint effects of A

∗
i0

and A∗
i1 on Y ∗

i2 when increasing one unit from the reference values in each treatment become
β20 + γ20l∗i0 + β21 + γ21l∗i1. This effect becomes β20 + β21 if there are no interaction effects
between confounders and treatments.

SNMMs consider a transformation U∗
im(τ ) of Y ∗

ik , the mean value of which is equal to the
mean that would be observed if treatment were stopped from time tk−1 onward, in the sense that

E(U∗
i(k−1)(τ )|L̄∗

i(k−1), Ā
∗
i(k−2) = ā∗

i(k−2), A
∗
i(k−1))

= E(Y ∗ā∗
i(k−2),0

ik |L̄∗
i(k−1), Ā

∗
i(k−2) = ā∗

i(k−2), A
∗
i(k−1)) (27)

for k = 1, . . . , K . Here, U∗
i(k−1)(τ ) is a vector with components Y ∗

im − ∑m−1
l=k−1 hl,m(L̄∗

il , Ā
∗
il; τ)

for m = k, . . . , K if g(·) is the identity link. For instance, in the above example of K = 2,

U∗
i1(τ ) = Y ∗

i2 − (β21 + γ21L
∗
i1)A

∗
i1,

U∗
i0(τ ) = (Y ∗

i1 − (β10 + γ10L
∗
i0)A

∗
i0,Y

∗
i2 − (β21 + γ21L

∗
i1)A

∗
i1 − (β20 + γ20L

∗
i0)A

∗
i0)

t . (28)

The assumptions of sequential ignorability (Eq. 10) together with identity (Eq. 27) imply
that

E(U∗
i(k−1)(τ

∗)|L̄∗
i(k−1), Ā

∗
i(k−1)) = E(U∗

i(k−1)(τ
∗)|L̄∗

i(k−1), Ā
∗
i(k−2)) (29)

for k = 1, . . . , K . The parameters τ can therefore be estimated by solving the estimating equation

N
∑

i=1

K
∑

k=1

[dk−1(L̄
∗
i(k−1), Ā

∗
i(k−1)) − E(dk−1(L̄

∗
ik−1, Ā

∗
ik−1)|L̄∗

i(k−1), Ā
∗
i(k−2))]◦

V−1 ◦ [U∗
i(k−1)(τ ) − E(U∗

i(k−1)(τ )|L̄∗
i(k−1), Ā

∗
i(k−2))] = 0, (30)
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where dk−1(L̄∗
i(k−1), Ā

∗
i(k−1)) is an arbitrary p × (K − k + 1)-dimensional function, with p the

dimension of τ , and V−1 is a p × (K − k + 1)-dimensional vector that includes the reciprocal of
the variance of each element in U∗

i(k−1)(τ ) − E(U∗
i(k−1)(τ )|L̄∗

i(k−1), Ā
∗
i(k−2)).

This estimating equation essentially sets the sum across the time points of the condi-
tional covariances between U∗

i(k−1)(τ ) and the function dk−1(L̄∗
i(k−1), Ā

∗
i(k−1)), given L̄∗

i(k−1)

and Ā∗
i(k−2), are zero. If there is homoscedasticity in V , then local semiparametric efficiency

under the SNMM is attained upon choosing

dk−1(L̄
∗
i(k−1), Ā

∗
i(k−1)) = E

[

∂U∗
i(k−1)(τ

∗)
∂τ

∣

∣

∣

∣

∣

L̄∗
i(k−1), Ā

∗
i(k−1)

]

(31)

(Vansteelandt& Joffe, 2014). Solving estimating equation (30) requires a parametricmodelA
for the treatment/predictor A∗

ik : f (A
∗
i(k−1)|L̄∗

i(k−1), Ā
∗
i(k−2); η)with k = 1, . . . , K . It also requires

a parametric model B for the conditional mean of U∗
i(k−1)(τ ), namely, f (U∗

i(k−1)(τ )|L̄∗
i(k−1),

Ā∗
i(k−2); κ). Notably, when the parameters η and κ are variation-independent, G-estimators that

solve Eq. (30), obtained by substituting η and κ with consistent estimators, are doubly robust
(Robins & Rotnitzky, 2001, cited from Vansteelandt & Joffe, 2014), meaning that estimates
of causal parameters are consistent when either model A or model B is correctly specified. In
addition, unlike the RI-CLPM (that includes L), one can allow nonlinear effects of time-varying
observed confounders on treatments/predictors and outcomes in models A and B.

5. Simulation Studies

5.1. Method

This section describes a Monte Carlo simulation for systematically investigating how effec-
tively the proposed method using calculated within-person variability scores can recover causal
parameters, and it presents comparisons of estimation performance versus other potential (cen-
tering) methods to account for stable traits. We consider two different scenarios: (i) the assumed
linear (and first-order) DGP of Fig. 1b (i.e., causal models represented in Eqs. 2 and 3) is correct
and other assumptions of consistency, sequential ignorability, SUTVA, positivity, modularity, and
multivariate normality are all satisfied, and (ii) some assumptions are violated and the statis-
tical model contains misspecifications. In the whole simulation, for simplicity we also assume
that causal effects are homogeneous among persons and interactions or moderation effects with
observed confounders are not present.

In the first scenario, initial within-person variability scores (Y ∗
i0, A

∗
i0, and L∗

i0) are first gen-
erated so that they are normally distributed and their variances and covariances become 10 and 3,
respectively. Then, within-person variability scores at succeeding times are sequentially generated
via a first-order linear autoregressive model (i.e., Eq. 3) with the stationarity assumption6:

6In this paper, we use the term stationarity assumption to indicate invariance of autoregressive parameters, cross-
lagged parameters, and residual variance parameters over time, rather than indicating means and (co)variances in variables
to be invariant over time.
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Y ∗
ik = 0.40Y ∗

i(k−1) + 0.40A∗
i(k−1) + 0.10L∗

i(k−1) + d(Y )
ik ,

A∗
ik = 0.20Y ∗

ik + 0.40A∗
i(k−1) + 0.30L∗

ik + d(A)
ik ,

L∗
ik = 0.20Y ∗

i(k−1) + 0.20A∗
i(k−1) + 0.50L∗

i(k−1) + d(L)
ik , (32)

If K = 4, this setting produces (see also the calculation in Eq. 13)

E(Y ∗
i4
ā∗
i3) = β40a

∗
i0 + β41a

∗
i1 + β42a

∗
i2 + β43a

∗
i3 = 0.0486a∗

i0 + 0.09a∗
i1 + 0.18a∗

i2 + 0.40a∗
i3,

E(Y ∗
i3
ā∗
i2) = β30a

∗
i0 + β31a

∗
i1 + β32a

∗
i2 = 0.09a∗

i0 + 0.18a∗
i1 + 0.40a∗

i2,

E(Y ∗
i2
ā∗
i1) = β20a

∗
i0 + β21a

∗
i1 = 0.18a∗

i0 + 0.40a∗
i1,

E(Y ∗
i1
a∗
i0) = β10a

∗
i0 = 0.40a∗

i0. (33)

Because no moderation effects are assumed, estimating 10 different causal parameters τK=4 =
(β10, β20, β21, β30, β31, β32, β40, β41, β42, β43)

t is a common goal betweenMSMs and SNMMs.
The variance of normal residual d was set to 5 for each variable, making the variance of within-
person variability scores for each variable become almost 10 at each time point (the proportion
of variance explained in Eq. (32) becomes almost 50%).

Independently of generatingwithin-person variability scores, three kinds of stable trait factors
(I (Y )
i , I (A)

i , and I (L)
i ) are generated by multivariate normal with a correlation of 0.3. Observed

values are then generated using the relation of Eq. (2),

Yik = I (Y )
i + Y ∗

ik, Aik = I (A)
i + A∗

ik, Lik = I (L)
i + L∗

ik, (34)

where temporal group means are set to zero at each time point (i.e., μ(Y )
k = μ

(A)
k = μ

(L)
k = 0).

In this simulation, we systematically changed the total number of persons as N = 200, 600,
and 1000, the number of time points as K = 4 and 8, and the size of stable trait factor variances as
φ2

(Y ) = φ2
(A) = φ2

(L) = 10/9, 30/7, and 10. This setting of stable trait factor variances indicates
that the proportion of this variance to that of measurements becomes around 10%, 30%, and 50%,
respectively, at each time point. To make it easier to compare the results between the K = 4
and K = 8 conditions, in K = 8 we suppose only A∗

i4, A
∗
i5, A

∗
i6, and A∗

i7 are intervened, while
controlling for A∗

i0, A
∗
i1, A

∗
i2, and A∗

i3. This setting produces conditional means of (potential)
outcomes as functions of treatments intervened: β84a∗

i4+β85a∗
i5+β86a∗

i6+β87a∗
i7 = 0.0486a∗

i4+
0.09a∗

i5 + 0.18a∗
i6 + 0.40a∗

i7 at k = 8, β74a∗
i4 + β75a∗

i5 + β76a∗
i6 = 0.09a∗

i4 + 0.18a∗
i5 + 0.40a∗

i6
at k = 7, β64a∗

i4 + β65a∗
i5 = 0.18a∗

i4 + 0.40a∗
i5 at k = 6, and β54a∗

i4 = 0.40a∗
i4 at k = 5. There

are a total of 10 causal parameters τK=8 = (β54, β64, β65, β74, β75, β76, β84, β85, β86, β87)
t that

are equal to those in the K = 4 condition (i.e., τK=4 = τK=8).
By crossing these factors, we generated 200 simulation data for each combination of factors.

For comparison, each simulation dataset was analyzed byMSMs and SNMMs using four different
scores: (1) true within-person variability scores (true factor score centering: e.g., Y ∗

ik = Yik −
I (Y )
i for Y ), (2) within-person variability scores predicted by the proposed method (Eq. 17),

(3) scores based on observed person-specific means (observed-mean centering, e.g., Ŷ ∗
ik = Yik −

Ȳi , where Ȳi = ∑K
k=0 Yik/(K + 1)), and (4) observed scores (no centering, e.g., Ŷ ∗

ik = Yik). In
the current scenario, the no-centering method totally ignores the presence of stable traits. On the
other hand, because observed means include the components of both stable traits (between-person
differences) and within-person variability, observed-mean centering fails to perfectly disentangle
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stable individual differences from within-person variability.7 Under each simulation condition,
we calculated the bias and root-mean-squared error (RMSE) of 10 kinds of estimates of causal
parameters from MSMs and SNMMs.

In the first step of the proposed method, to identify the measurement model (e.g., Eq. 16
for Y ) SEM that assumes a linear AR(1) structure with time-varying autoregressive parameters
and residual variances is specified for within-person variability scores in each variable. Although
a true model (i.e., AR(K ) structure) cannot be specified because of the identification problem,
we confirmed that the AR(1) structure generally provides acceptable model fits under the current
parameter setting.

The results are discarded when improper solutions appear in the first step because of out-of-
range parameter estimates (e.g., negative variance). In the current simulation, fewer than 0.1% of
all estimates produced such improper solutions. We also confirmed that improper solutions were
not found in the second step of applyingMSMs and SNMMs.When applyingMSMs, a first-order
linear regression model is specified for the treatment assignment model, namely, f (At |At−1, Lt )

(i.e., the correct specification). For SNMMs, modelsA and B are also specified in an appropriate
manner.

In the second scenariowheremodelmisspecifications are present, we assume variousDGPs in
which (a)measurement errors are present, (b) time-invariant factors donot influencemeasurements
as stable trait factors, and (c) quadratic effects of time-varying observed confounders are present
in the treatment assignment model, keeping the other conditions the same from the first scenario.
More specifically, in (a), all measurements are influenced by normally distributed measurement
errors with variances of 10% or 20% of those of the initial measurements (=10+φ2). In (b), the
relation between outcomes and time-invariant factors (I ) is set as Yik = (1 + 0.5k/K )I (Y )

i +
0.3I (A)

i + 0.3I (L)
i + Y ∗

ik , (i.e., time-varying loadings from I (Y ) and those from other variables
(I (A) and I (L)) are present), resulting from the assumed DGP such as that in Fig. 1a in which
time-invariant factors have both direct and indirect effects on measurements. In (c), quadratic
effects from time-varying observed confounders are included in the treatment assignment model
as A∗

ik = 0.20Y ∗
ik + 0.08Y ∗2

ik + 0.40A∗
i(k−1) + 0.30L∗

ik + d(A)
ik , indicating that the treatment

assignment model that includes only linear effects of Y ∗
ik assumed in the currentMSM and SNMM

is misspecified. Note that causal parameters for time-varying treatments (τ ) remain unchanged
even if quadratic effects exist in the treatment assignment model because time-varying treatments
are now intervened.

The simulation was conducted in R, using the lavaan package (Rosseel, 2012) to estimate
parameters by SEMwith MLE in the first step and the i pw package for MSMs in the second step.
In SNMMs, we solve Eq. (30) via the Newton–Raphson method. Simulation code is available in
the Online Supplemental Material.

5.2. Results

Because of space limitations, Fig. 2 shows only biases of estimates of causal parameters in
MSMs and SNMMs when φ2 = 10/9 and 10. Because differences in the N value were minor in
terms of bias, here we only show the result when N = 1000. Results under other conditions are
provided in the Online Supplemental Material (Figs. S3 and S4).

Figure 2 shows that true score conditions produce almost no biases in both MSMs and
SNMMs. SNMMs show smaller RMSEs compared with MSMs on average (Fig. S2). In the
proposed method, estimates show biases because of the biased estimates of stable trait factor
(co)variances triggered by a model misspecification in the first step. However, the magnitude of

7As a similar problem, the risk of using observed person-specific (or cluster-specific) means to express cluster effects
is recognized as Nickell’s bias and Lüdtke’s bias for estimates of regression coefficients in applications of multilevel
models (e.g., Asparouhov & Muthén, 2018; Lüdtke et al., 2008; McNeish & Hamaker, 2020; Usami, 2017).
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Figure 2.
Biases of causal effects estimates (N = 1000). Note: Because of rank deficient, in K = 4 estimates of β40, β41, β42, β43
are not available in marginal structural model with observed mean centering.

biases is much smaller than in the observed-mean centering and no-centering methods. SNMMs
again show smaller RMSEs than do MSMs (Fig. S2). The observed-mean centering method
shows negative biases, and their magnitude becomes larger when K = 4. This result is caused
by negatively biased covariances in variables resulting from subtracting observed means from
measurements, and this impact increases as K decreases. Another critical aspect of this method
is that linear dependence prevents identification of joint effects of all past treatments on YK (in
this case, β40, β41, β42, β43 in K = 4). We therefore do not recommend use of observed-mean
centering. The no-centeringmethod shows serious negative biaseswhenφ2 is not small, indicating
that ignoring the presence of stable traits is critical to estimating causal effects. Magnitudes of
stable trait factor variances should vary depending on the nature of variables and study period,
but in the author’s experience many studies that applied the RI-CLPM have shown significant
and moderate to large sizes of φ̂2 (e.g., the proportion of stable trait factor variance to that of
measurements is above 30%). The following application also demonstrates large stable trait factor
variance estimates.

As supplemental analyses, we additionally explored the performance of the methods under
different parameter settings, as well as different model specification of SEM in the first step.
From this, we find similar tendencies in the results (Figs. S5–S8): (a) SNMMs show smaller
RMSEs than do MSMs, and (b) the proposed method shows adequate performance in terms
of biases and RMSEs, and it works better than the no-centering method (especially when φ

is larger) and the observed-mean centering method (especially when K is smaller). We also
investigated the performance of linear correlation preserving predictor ( Î (Y )

i in Eq. 22) centering

(e.g., Ŷ ∗
ik = Yik − Î (Y )

i ), confirming that the proposed method worked much better than this
method on average (Figs. S5–S8).

Similar results were also observed in the second scenario, where model misspecifications are
present (Figs. S9–S14). More specifically, when measurement errors were present, the biases and
RMSEs became larger in all methods (Figs. S9 and S10). However, the proposed method still
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outperforms other centeringmethods.When time-invariant factors do not influencemeasurements
as stable trait factors, the overall results of biases andRMSEswere not largely affected (Figs. S11–
S12), regardless of the magnitude of φ2. This result is a little surprising, considering that the
specified time-varying loadings from factors (= 1 + 0.5k/K at time tk) are not small (i.e., the
impact of this factor on the variance ofmeasurement at time tK is almost twice that at time t0). This
may suggest that causal parameters can be recovered relatively well even when ignoring time-
varying impacts from time-invariant factors that are actually present in the first step. However,
future investigations are required in order to better clarify when estimated causal parameters are
seriously biased under various scenarios for misspecified measurement models. When quadratic
effects from time-varying observed confounders are present in the treatment assignmentmodel but
are ignored in analyses, biases and RMSEs in MSMs become larger on average. In the proposed
method, this is salient in the RMSEs for the K = 8 and φ2 = 10 conditions (Figs. S13–S14).
SNMMs, which have the property of being doubly robust in G-estimators, were less influenced
even if these by-no-means small quadratic effects are ignored, and inmany conditions the proposed
method again outperforms other centering methods.

6. Empirical Application

This section describes an empirical application of the proposed method using data from the
Tokyo Teen Cohort (TTC) study (Ando et al., 2019). We assume a similar causal DAG model to
that in Fig. 1b: (i) measurements are expressed by the linear sum of stable trait factors and within-
person variability scores, (ii) within-person variability scores are expressed by functions (with
assumption of homogeneity) of those in past time, along with (iii) consistency, (iv) sequential
ignorability, (v) SUTVA, (vi) positivity, and (vii) modularity.

TTC was a multidisciplinary longitudinal cohort study on the psychological and physical
development of adolescents who were 10 years old at enrollment and lived in municipalities in
the Tokyo metropolitan area (Setagaya, Mitaka, Chofu). Datasets were collected in three waves:
from 2012 to 2015, from 2014 to 2017, and from 2017 to 2019 (i.e., K = 2). In total, 3171
children participated in the survey. See Ando et al. (2019) for more detailed information about
measured variables, participant recruitment, and demographic characteristics of participants in
the TTC study.

In this example, we estimate the (joint) causal effects of time-varying sleep duration (A) on
later depressive symptoms (Y ) in adolescents. Several epidemiological studies have suggested a
relationship between sleep habits (sleep duration, bedtime, and bedtime regularity) and mental
health status (depression and anxiety) in adolescents. For example,Matamura et al. (2014) applied
the CLPM to data from 314monozygotic twins living in Japan and showed that sleep duration had
significant associations with mental health indices, even after controlling for genetic and shared
environmental factors. However, to the author’s knowledge, no studies have investigated this
relation that accounts for stable traits in sleep duration and symptoms (i.e., at the within-person
level).

The Short Mood and Feelings Questionnaire (SMFQ; Angold et al., 1995) was used to
measure depression in adolescents (Y ). The SMFQ consists of 13 items assessing depressive
symptoms rated on a three-point scale (0: not true, 1: sometimes true, 2: true) regarding feelings
and actions over the preceding two weeks. Higher SMFQ scores suggest more severe symptoms.
These data weremeasured at home by self-report questionnaires. In this example, sleep duration in
hours (A) wasmeasured by the question “How long do you usually sleep onweekdays?" Observed
confounders were body mass index (BMI; LB) and bedtime (L A), which was measured by the
question “When do you usually go to bed on weekdays?" Because many adolescents reported no
problems for all items on the SMFQ, the score distribution was positively skewed. In the present
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example, we focus on the clinical group comprising N = 416 adolescents (13.1%) with SMFQ
scores of 6 or higher during the study. Katon et al. (2008) reported 80% sensitivity and 81%
specificity at this cutoff for diagnosis of major depression based on the Computerized Diagnostic
Interview Schedule for Children (C-DISC). Missing data were primarily due to dropout. Of the
416 samples, 113 adolescents provided all three responses in the study. Descriptive statistics of
sleep duration, SMFQ score, bedtime, and BMI are available in the Online Supplemental Material
(Table S1).

In the first step, we use generalized least squares in the lavaan package to estimate the model
parameters for each variable. To identify the measurement model (e.g., Eq. 16 for Y ), SEM that
assumes an AR(1) structure with time-varying autoregressive parameters and residual variances
is specified for within-person variability scores of each variable. Let Pi be the total number of
variables observed in adolescent i . Pi × Pi weights Wi are calculated from estimated parameters
under the assumption of MAR. Within-person variability scores X∗

i are then calculated using this

weight and measurements Xi,obs for adolescent i as X̂∗
i = Wt

i Xi,obs.
Causal parameters (β and γ ) of sleep duration at 10 and 12 years old (A∗

0 and A∗
1) on later

depressive symptoms (SMFQ scores Y ∗
1 and Y ∗

2 ) are estimated using calculated within-person
variability scores by linear SNMM. In linear SNMM, blip functions and U∗(τ ) are set as in
Eqs. (26) and (28), except that the two confounders LA and LB are present in this example. When
applying SNMMs, models A and B are both specified using first-order linear regression models.
All calculated within-person variability scores were used in the analysis under the assumption of
MAR.

We confirmed that the first step did not find improper solutions, and that current AR(1)models
that assume time-varying parameters fit better than those that do not. Table S2 summarizes the
model fit indices and estimated parameters in this step. All stable trait factor variance estimates
are significant, indicating the necessity of controlling for stable traits. Specifically, the proportions
of variances in measurements attributable to estimated stable trait factors at k = 0 are 24.5%,
54.5%, 48.2%, and 74.8% for Y , A, L A, and LB , respectively.

Table 1 provides the estimation results of causal parameters, along with estimates based on
the no-centering and observed-mean centering methods for comparison. As seen in Table 1, the
proposed method reveals that intervention of longer sleep duration at 12 years old (A∗

1) has a
positive effect (β̂21 = −2.704, 95%CI [−4.938,−0.470], p <.05) on later depressive symptoms
at 14 years old (Y ∗

2 ) at the within-person level, but this estimate is not significant in the no-
centering and observed mean score-centering methods. Similar positive effects of sleep duration
were found in previous studies (Matamura et al., 2014), but the present analysis newly investigates
this causal hypothesis at the within-person level by controlling for stable traits of persons. When
the no-centering method is applied, the causal effect estimate of A∗

0 on Y
∗
1 is significant, showing

that intervention of longer sleep duration at 10 years old has a negative effect (β̂10 = 1.693, 95%
CI [0.405,2.981], p <.05) on later depressive symptoms at 12 years old. Considering that the
magnitudes of the estimated stable trait factor variances were moderate or large for all variables,
causal effect estimates in the no-centering method are unreliable and might be seriously biased.

In supplemental analyses, we confirmed that the major findings did not change even when
using only data of adolescents who provided all three responses (N = 113) and a different cutoff
for SMFQ (Angold et al., 1995; Tables S2–S5). Again, statistical significance as well as sign and
magnitude in estimates of causal parameters might change according to the choice of calculation
(centering) methods for within-person variability scores, and ignoring the presence of stable traits
of persons might lead to incorrect conclusions.
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Table 1.
Estimates of causal parameters of sleep duration on depression (SMFQ) (N = 416)

Proposed method Observed-mean
centering

Observed scores (no
centering)

Sleep1 → SMFQ2 (β21) −2.704 (1.140) 0.095 (0.869) −1.492 (1.080)
(Sleep1 × Bedtime1) → SMFQ2 (γ21A) −0.603 (1.416) 0.916 (1.857) 0.336 (1.057)
(Sleep1 × BMI1) → SMFQ2 (γ21B) −0.442 (0.638) −0.748 (1.169) −0.532 (0.399)
Sleep0 → SMFQ2 (β20) −0.293 (1.179) −0.309 (1.021) 0.185 (1.117)
(Sleep0 × Bedtime0) → SMFQ2 (γ20A) 2.278 (1.918) −3.012 (1.784) 1.169 (1.792)
(Sleep0 × BMI0) → SMFQ2 (γ20B) −1.856 (0.780) −0.251 (0.986) 0.306 (0.287)
Sleep0 → SMFQ1 (β10) 0.702 (0.686) 0.279 (0.572) 1.693 (0.657)
(Sleep0 × Bedtime0) → SMFQ1 (γ10A) 0.315 (1.177) 1.037 (1.069) −0.918 (0.920)
(Sleep0 × BMI0) → SMFQ1 (γ10B) 0.021 (0.473) 0.773 (0.572) −0.101 (0.212)

Bold font indicates statistical significance.

7. General Discussion

We proposed a two-step estimation method for within-person variability score-based causal
inference to estimate joint effects of time-varying (continuous) treatments/predictors by control-
ling for stable traits. In the first step, a within-person variability score for each person, which
is disaggregated from the stable trait factor score, is calculated using weights based on the best
linear correlation preserving predictor through SEM. Causal parameters are then estimated by
MSMs or SNMs, using calculated within-person variability scores. The proposed method can be
viewed as one that synthesizes the two traditions of factor analysis/SEM in psychometrics and a
method of causal inference (MSMs or SNMs) in epidemiology.

In this paper, we began by providing formal definitions of stable trait factors (for between-
person relations) and within-person variability scores (for within-person relations), because these
concepts have not been fully characterized in the causal inference literature despite the fact
that they have been attracting increasing attention in psychometrics and behavioral science (e.g.,
Hamaker et al., 2015; Usami et al., 2019a). On the other hand, in epidemiology the conceptual and
mathematical differences between stable trait factors and accumulating factors, along with which
kind of time-invariant factor is included in each statistical model, have received less attention. This
paper may help bridge the gap. We have also clarified the assumptions required to identify causal
parameters for within-person variability score-based causal inference: (i) (as depicted in Fig. 1b)
measurements are expressed by the linear sum of stable trait factor scores (defined as Eq. 4)
and within-person variability scores (defined as Eq. 5) that are mutually uncorrelated, (ii) within-
person variability scores are expressed by functions of those (with assumption of homogeneity) in
past time, (iii) consistency, (iv) sequential ignorability, (v) SUTVA, (vi) positivity, (vii)modularity,
and (viii) multivariate normality (if MLE is used in the first step).

As for the second assumption, our approach is more flexible than the RI-CLPM (that includes
time-varying observed confounders), which researchers are becoming increasingly interested in
for uncovering within-person relations among variables, in that the assumption of linearity is
not required with respect to time-varying observed confounders at the within-person level. We
particularly emphasize the utility of SNMs with G-estimation, because of its property of being
doubly robust to the model misspecifications in how the time-varying observed confounders are
functionally related to treatments/predictors and outcomes, along with flexibility in that it allows
investigation of moderation effects of treatments with observed confounders.
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Through simulation and empirical application, we illustrated that ignoring the presence of
stable traits might lead to incorrect conclusions in causal effects. We also confirmed that the
proposed approach is superior to observed-mean centering, as a conventional method to predict
stable traits of persons. Especially when K is small, observed-mean centering showed serious
negative biases in estimates of causal parameters. Considering that most research applying the
RI-CLPM to uncover within-person relations used longitudinal data with two or three time points
(K = 1, 2; e.g., Usami et al., 2019b), observed-mean centering cannot be recommended.

A recent study provided closed-form parametric expressions of causal effects for linear mod-
els (Gische et al., 2021), and Gische and Voelkle (in press) proposed asymptotically efficient
estimators in the case of ML estimation. It is suggested that, at least in large samples, the para-
metric procedure proposed by Gische and Voelkle (in press) may give smaller standard errors
compared with the proposed method in simulations in which data are generated by a linear model
with normal residuals. Comparing the performances of these methods and the RI-CLPM under
various conditions that account for nonlinear relations among variables is an important topic for
future studies.

One caveat for the proposedmethod, which is relevant to the second assumption above, is that
in the first step, one must correctly specify the structure (such as the AR(1) structure) for within-
person variability scores in each variable so that the (identified) SEMcan yield consistent estimates
of parameters, which are required for consistent estimation of causal effects in the subsequent
step. However, in general, how to establish the correct (or even a plausible) DAGmodel is a major
challenge (Hamaker et al., 2020; see also the discussion in Sect. 2.4). Relatedly, the premise that
stable trait factors exist and loadings from factors are equal to those in theDGPmight be restrictive
in actual applications; therefore, we need to carefully account for the consequences of possible
model misspecifications in the first step on the results in the second step to precisely infer within-
person relations. The good news is that in the present simulation, we confirmed that the specified
time-varying AR(1) structure works well to recover causal parameters, and its performance was
not largely influenced even when there were model misspecifications (i.e., time-varying effects
from time-invariant factors). However, additional large-scale simulations to further clarify the
robustness of the method regarding this point are needed in future studies.

We can also use model fit indices to evaluate how well the structure specified in the first
step fits to the data, especially when the number of time points is large. However, this procedure
is not a fundamental solution. Even if a researcher is certain that SEM that assumes stable trait
factors for each variable can be specified in the first step, in general there is still at great risk of
violating some assumptions. Notably, relating to the first assumption above, stable trait factors
and within-person variability scores (temporal deviations) at each time point might be correlated
if they share common causes. Future studies should investigate how this violation impacts the
estimated causal parameters.

We used two-step estimation to account for feasibility, but this issue remains in that one still
must write programming code, as that in the Online Supplemental Material. We are planning
to develop packages for the proposed method. Another potential limitation is that the proposed
approach (as well as the RI-CLPM) demands longitudinal data with three or more time points
(K ≥ 2) to identify the measurement model (SEM) in the first step unless strong parameter
constraints are imposed.

Because we take an SEM approach in the first step, accounting for measurement errors, which
is closely related to violation of the consistency assumption, is feasible under the parametric
assumption. Although we expect that longitudinal data with large K are required for precisely
estimating measurement-error variances, we plan to investigate how the proposed method works
under measurement models that include measurement errors.

This paper opens a new avenue for exploring other various research questions that are closely
relevant to causal hypotheses. For example, use ofwithin-person variability scores can be extended
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to cases in which one is interested in uncovering reciprocal effects (e.g., Usami et al., 2019a) and
mediation effects (e.g., Goldsmith et al., 2018; Tchetgen&Shpitser, 2012), as well as tomultilevel
modeling and hierarchical continuous time modeling (Driver & Voelkle, 2018). Note that there is
still room for discussion on the issues ofwithin-person relation and stable traits, aswell as the issue
about when and how to include (time-invariant) factors in the assumed DGP (see Sect. 2.4). The
present paper is intended to promote substantial discussion about the conceptual and statistical
properties of the time-invariant factors (e.g., stable trait factors or accumulating factors) included in
the assumed DGP among researchers who wish to infer within-person relations and causality, and
the hope is that the proposed method helps in exploring various causal hypotheses in longitudinal
design and guiding better decision-making for researchers.
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