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Confidence Interval-Based Sample Size Determination Formulas and Some

Mathematical Properties for Hierarchical Data
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The use of hierarchical data (also called multilevel data or clustered data) is common in

behavioural and psychological research when data of lower-level units (e.g., students, clients, re-

peated measures) are nested within clusters or higher units (e.g., classes, hospitals, individuals).

Over the past twenty-five years we have seen great advances in methods for computing the sample

sizes needed to obtain the desired statistical properties for such data in experimental evaluations.

The present research provides closed-form and iterative formulas for sample size determination that

can be used to ensure the desired width of confidence intervals for hierarchical data. Formulas are

provided for a four-level hierarchical linear model that assumes slope variances and inclusion of

covariates under both balanced and unbalanced designs. In addition, we address several mathemat-

ical properties relating to sample size determination for hierarchical data via the standard errors of

experimental effect estimates. These include the relative impact of several indices (e.g., random

intercept or slope variance at each level) on standard errors, asymptotic standard errors, minimum

required values at the highest level, and generalized expressions of standard errors for designs with

any-level randomization under any number of levels. Particularly, information for the minimum

required values will help researchers to minimize the risk of conducting experiments that are statis-

tically unlikely to show the presence of an experimental effect.

Keywords: sample size, confidence interval, hierarchical data, experimental design
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1 Introduction

A hierarchical linear model (HLM*1) is a regression model for hierarchical data (also called

multilevel data, clustered data, or grouped data). In behavioural and psychological research, we of-

ten encounter hierarchical data in which data of lower-level units (e.g., students, clients, and repeated

measures) are nested within higher-level clusters (e.g., classes, hospitals, individuals), causing cor-

relations among data within same higher-level clusters. The number of levels varies: sometimes

three-level designs (e.g., students are nested within classes, and classes are nested within schools) or

four-level designs (students are nested within classes, classes are nested within schools, and schools

are nested within districts) are used to detect an experimental effect (e.g., Heo & Leon, 2008; Kon-

stantopoulos, 2008a, 2008b; Muthén & Muthén, 1998-2010; Schochet, 2008; Skrondal & Rabe-

Hesketh, 2004; Spybrook, Hedges, & Borenstein, 2014). When randomization is performed at the

highest level, such experimental designs are typically called hierarchical designs (HD) or cluster

randomized trials. In contrast, when randomization is not performed at the highest level, researchers

typically use terminology such as randomized blocked designs (RBDs) or multisite (cluster) ran-

domized trials (Spybrook et al., 2014). Randomization at higher levels is sometimes preferable for

various procedural reasons (e.g., convenience of gathering data or ethical considerations), so there

has been an increase in the literature on statistical power calculations for such cases (Heo & Leon,

*1 HLMs are also called multilevel models (Goldstein, 2003; Hox, 2010; Rabe-Hesketh, Skrondal & Pickles, 2004;
Singer & Willett, 2003; Skrondal & Rabe-Hesketh, 2004), mixed-effects models, or random-effects models (Laird &
Ware, 1982).
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2008; Usami, 2014; Spybrook et al. , 2014).

Over the past twenty-five years we have seen great advances in methods for estimating in ad-

vance the sample size that should be used to ensure that an experiment achieves the desired statistical

power when trying to detect an experimental effect (e.g., Bloom, 2005; Dong & Maynard, 2013; Faz-

zari, Kim & Heo, 2014; Hedges & Borenstein, 2014; Hedges & Rhoads, 2010; Konstantopoulos,

2013; Liang & Pulver, 1996; Moerbeek & van Breukelen, 2000; Maas & Hox, 2005; Moerbeek,

2005; Raudenbush, 1997; Raudenbush & Liu, 2000; Roy, Bhaumik, Aryal, & Gibbons, 2007; Sni-

jders & Bosker, 1993; Usami, 2014). Various methods for estimating required sample sizes are

available, including software and mathematical formulas when using hierarchical data sets. Notably,

Dong and Maynard (2013) have provided a powerful tool called PowerUp! that can be used for var-

ious experimental and quasi-experimental designs to compute minimum detectable effect sizes for

existing studies and to estimate minimum required sample sizes for studies under design. Other soft-

ware, such as Optimal Design Plus (OD Plus; Raudenbush et al., 2011) and CRT Power (Borenstein,

Hedges, & Rothstein, 2012), are also of great help to applied researchers for computing required

sample sizes, and can be effectively used regardless of the level of randomization. Spybrook et al.

(2014) provide explicit connections between the languages, notation, and design parameters of OD

Plus and CRT Power.

The present study aimed to contribute to this research area mainly in two ways. First, we

provide closed-form and iterative sample size determination formulas that can be used to ensure

the desired width of confidence intervals for hierarchical data. Over-reliance on null hypothesis
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significance testing has been criticized, in that rejection of the null hypothesis itself does not pro-

vide useful information because, strictly speaking, the null hypothesis is rarely true in reality (e.g.,

Balluerka, Gomez, & Hidalgo, 2005; Cohen, 1994; Wasserstein & Lazar, 2016; Sedlmeier, 2009).

The American Psychological Association (APA) has therefore recommended that researchers report

confidence intervals (American Psychological Association, 2010) and the American Statistical Asso-

ciation (ASA) has recently released a “Statement on Statistical Significance and P-Values” giving six

principles underlying the proper use and interpretation of p-values, saying that statistical significance

does not measure the size of an effect or the importance of a result (American Statistical Associa-

tion, 2016). Most previous research, however, has focused on sample size determination that only

accounts for statistical power and total cost, failing to consider procedures for ensuring precision

of experimental effect estimates (i.e., confidence intervals). Exceptionally, Usami (2014) derived

confidence interval–based sample size determination formulas, focusing on three-level experimental

designs. However, the derived formulas might provide biased estimates of required sample sizes,

because the formulas rely on several assumptions that might not be realistic (e.g., assumptions that

all residual variances are known in a random intercept model) and do not permit various experimen-

tal designs that are used in practice (e.g., four-level hierarchical designs and experimental designs

that include covariates to reduce the magnitude of residual variances). For example, in the fields

of policy evaluation and educational effectiveness research, outcome magnitudes (e.g., educational

achievement) typically vary among higher-level units due to multiple reasons, including organiza-

tional environment (e.g., class climate, differences in teaching style of teachers) and geographical
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conditions (e.g., city, suburban, or rural area). In addition, as we will explain below, this unit dif-

ference at higher levels is closely associated with standard errors of experimental effect estimates,

so including covariates that can explain the difference (e.g., teacher’s beliefs as measured on a psy-

chological scale, size and male-to-female ratio in each class or school) is useful towards achieving

desired precision of estimates. For these reasons, developing a new procedure that can be applied in

such realistic situations and designs is undoubtedly desirable.

Second, we address several mathematical properties relating to sample size determination for

hierarchical data via standard errors for experimental effect estimates. These include the relative

impact of several indices (e.g., random intercept and slope variance at each level) on standard errors,

asymptotic standard errors, minimum required values at the highest level, and generalized expres-

sions of standard errors for designs with any-level randomization under any number of levels. These

results are helpful for researchers searching for better research designs, because they can promote

understanding about how required sample sizes change according to the research design. In addition,

because the number of indices (or parameters) that must be specified for sample size determination

increases in hierarchical experimental designs, such investigation can clarify the relative importance

of accurate specification of each index (or parameter), contributing to making the whole procedure

of sample size determination more efficient. We also derive the minimum requirements for sample

sizes at the highest (i.e., four) level. This result will be especially useful for researchers, allowing

them to minimize the risk of conducting experiments that have little chance to reveal the presence

of an experimental effect statistically. For example, if large variance of outcomes (e.g., educational
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achievement) among highest units (e.g., district) is expected in HD, researchers can evaluate the min-

imum required number of districts that should be sampled to achieve desired widths for confidence

intervals, and how these numbers can be effectively reduced by re-examining research designs.

This article is organized into six sections. Section 2 discusses standard errors for experimental

effect estimates in a four-level hierarchical model in a comprehensive manner. In Section 3, sample

size determination formulas based on the desired width of confidence interval are provided. Exam-

ples of estimating the necessary sample size using the provided formulas are addressed in Section

4. Section 5 addresses several mathematical properties relating to sample size determination for hi-

erarchical data via standard errors of the experimental effect estimates. From the results so far, we

will address that the choice of RBD or HD yields different consequences in various aspects of sam-

ple size determination, and in many cases RBD is preferable to HD in terms of required sizes (i.e.,

smaller standard errors). The final section discusses prospects for the proposed method and future

investigations. An appendix provides formulas for when the number of levels is less than four, and

provides a derivation of standard errors. R code for calculating all required sizes is provided in the

Online Supporting Materials.

2 Statistical model

In this section, we introduce standard errors for experimental effect estimates in four-level

hierarchical models. For brevity, we first show standard errors based on a four-level random-intercept

model, and expand these results to more general hierarchical models. That is, we will consider a
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four-level hierarchical model that assumes both random intercept and slope with the inclusion of

covariates. In addition, we confine our discussion to the case where numbers of lower-level units

are equal for all higher clusters. Regarding this point, although cluster sizes are almost always

different due to missing data (e.g., nonresponses) or other procedural limitations, in this case it is

permissible to substitute the harmonic mean for the number of units per cluster, because it provides a

good approximation for the calculation of required sizes (e.g., Dong & Maynard, 2013; Raudenbush,

1997).

Let Yi jkl be the outcome (e.g., educational achievement) for a level-1 unit (index i, with i ∈

{1, 2, . . . , n1}; e.g., a student) nested within a level-2 unit (index j, with j ∈ {1, 2, . . . , n2}; e.g., a

class) nested within a level-3 unit (index k, with k ∈ {1, 2, . . . , n3}; e.g., a school) nested within a

level-4 unit (index l, with l ∈ {1, 2, . . . , n4}; e.g., a district). We assume the following four-level

random intercept model for expressing Yi jkl:

Yi jkl = (β0 + δXi jkl) + (ei jkl + e jkl + ekl + el). (1)

Here, Xi jkl is an assignment indicator variable set to 1 to indicate assignment to an experimental

group (e.g., new teaching method is used) and set to 0 to indicate assignment to a control group

(e.g., existing teaching method is used). Let the proportion of units in the experimental group be P

(0 < P < 1). Balanced design is satisfied only when P = 0.5. In RBD with two- and level-three ran-

domizations and HD, we can simplify by letting Xi jkl = X jkl, Xi jkl = Xkl, and Xi jkl = Xl, because clus-



Sample size determination for hierarchical data 9

ters are randomized at each level. So, the numbers of level-1 units assigned to an experimental group

per higher-level cluster differ among designs. An example of Xi jkl where n1 = n2 = n3 = n4 = 2 is

provided in Table 1.

In the equation above, β0 is an overall control group mean, and ei jkl, e jkl, ekl, and el are resid-

uals, assumed to be independent of Xi jkl and each other. Additionally, these residuals are assumed

to be distributed according to ei jkl ∼ N(0, σ2
1), e jkl ∼ N(0, σ2

2), ekl ∼ N(0, σ2
3), and el ∼ N(0, σ2

4),

respectively. Here, σ2
1, σ2

2, σ2
3, and σ2

4 are the variances of outcomes for the units of each level in

their respective groups.

From equation (1), it is evident that the mean of Yi jkl for a given Xi jkl is

E(Yi jkl|Xi jkl) = β0 + δXi jkl. (2)

Additionally, the covariance of Yi jkl and Yi′ j′k′l′ can be generally expressed as

cov(Yi jkl,Yi′ j′k′l′ |Xi jkl, Xi′ j′k′l′ ) = 1(i = i′& j = j′&k = k′&l = l′)σ2
1 + 1( j = j′&k = k′&l = l′)σ2

2

+1(k = k′&l = l′)σ2
3 + 1(l = l′)σ2

4, (3)

where cov(·) denotes covariance and 1(·) is an indicator function that takes the value 1 if the con-

ditions in the parentheses are satisfied and 0 otherwise. From equation (3), the variance of Yi jkl
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(namely, the covariance when i = i′, j = j′, k = k′, and l = l′) can be expressed as

var(Yi jkl|Xi jkl) = σ2
1 + σ

2
2 + σ

2
3 + σ

2
4 = σ

2. (4)

We define the standardized effect size ∆ of an experimental effect δ following Cohen (1988), using

the pooled standard deviation σ. *2 Namely,

∆ =
δ

σ
. (5)

The proportion of variance ρm for level m (m=1,2,3,4) can now be expressed as ρm =
σ2

m

σ2
1+σ

2
2+σ

2
3+σ

2
4
=

σ2
m
σ2

*3. When outcome is standardized and then σ2 is set to 1, from equation (5), ∆ = δ (i.e., a

standardized effect size is equivalent to a raw experimental effect) and ρm = σ
2
m. The standard error

of an experimental effect estimate δ̂ in each randomized trial can be expressed as

se(δ̂) =



se(δ̂1) = σ
√

ρ1
NP(1−P) (RBD with level-one randomization)

se(δ̂2) = σ
√

n1ρ2+ρ1
NP(1−P) (RBD with level-two randomization)

se(δ̂3) = σ
√

n1n2ρ3+n1ρ2+ρ1
NP(1−P) (RBD with level-three randomization)

se(δ̂4) = σ
√

n1n2n3ρ4+n1n2ρ3+n1ρ2+ρ1
NP(1−P) (HD)

(6)

*2 As we will explain later, if random slopes are assumed in hierarchical model, σ2 = σ2
1 + σ

2
2 + σ

2
3 + σ

2
4 indicates

variance of outcome in control group (i.e. σ2 = var(Yi jkl |Xi jkl = 0)).
*3 Although we frame our discussion in terms of residual variances, in the hierarchical modelling literature intra-class

correlations (ICCs) are popular indices that express correlations among data within the same higher-level clusters.
ICCs for units in the same level-2, level-3, and level-4 clusters can be expressed using the residual variances as
ICC2 = σ

2
2 + σ

2
3 + σ

2
4, ICC3 = σ

2
3 + σ

2
4, and ICC4 = σ

2
4, respectively.
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Here, N = n1n2n3n4, and se(δ̂m) (m = 1, 2, 3, 4) is a standard error of δ̂ in level-m randomization.

Because the derivations of these results in a four-level hierarchical model have not been comprehen-

sively provided in the literature, we provide them in Appendix A. It is evident that se(δ̂3) = se(δ̂4)

when ρ4 = 0, se(δ̂2) = se(δ̂3) when ρ3 = 0, and se(δ̂1) = se(δ̂2) when ρ2 = 0. Additionally, from

equation (6) it is evident that a balanced design (where P = 1/2, namely, an equal number of units

is allocated in each group) can achieve the smallest standard errors.

When heterogeneity of experimental effects (random slopes; e.g., a teaching effect is positive

in some classes, schools, or districts, but negative in others) is assumed at each level (i.e., replacing

δ with δ jkl, δkl, or δl for level-one, level-two, level-three randomizations, respectively)*4, the above

standard errors become

se(δ̂) =



se(δ̂1) = σ
√

P(1−P)n1n2n3ρ4ω4+P(1−P)n1n2ρ3ω3+P(1−P)n1ρ2ω2+ρ1
NP(1−P)

se(δ̂2) = σ
√

P(1−P)n1n2n3ρ4ω4+P(1−P)n1n2ρ3ω3+n1ρ2+ρ1
NP(1−P)

se(δ̂3) = σ
√

P(1−P)n1n2n3ρ4ω4+n1n2ρ3+n1ρ2+ρ1
NP(1−P)

se(δ̂4) = σ
√

n1n2n3ρ4+n1n2ρ3+n1ρ2+ρ1
NP(1−P) .

(7)

*4 If level-one RBD is used in a four-level hierarchical model that assumes random slopes, the analysis model can be
expressed as

Yi jkl = (β0 + δXi jkl) + [(r jkl + rkl + rl)Xi jkl + (ei jkl + e jkl + ekl + el)].

Here, r jkl, rkl and rl are residuals indicating random slopes at the second, third, and fourth levels, respectively, and are
assumed to be independent of Xi jkl. Additionally, they are assumed to be distributed according to r jkl ∼ N(0, σ2

s2),
rkl ∼ N(0, σ2

s3), and rl ∼ N(0, σ2
s4). Here, σ2

s2, σ2
s3, and σ2

s4 are the slope variances at each level. Note that in this
model residual variancesσ2

m(m = 1, 2, 3, 4) can be interpreted as random intercept variances, andσ2 = σ2
1+σ

2
2+σ

2
3+σ

2
4

is a variance of Y in a control group (i.e., σ2 = var(Yi jkl |Xi jkl = 0)). If a level-two RBD is used, this implies r jkl = 0,
indicating σ2

s2 = 0. Likewise, when a level-three RBD is used, it means that r jkl = rkl = 0 and σ2
s2 = σ

2
s3 = 0. Finally,

when HD is used, we have r jkl = rkl = rl = 0 and σ2
s2 = σ

2
s3 = σ

2
s4 = 0, so this setting is essentially equivalent to the

random intercept model of equation (1).
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Note that the amount of se(δ̂4) (i.e., HD) is unchanged regardless of this assumption. Here, ωm =

σ2
sm/σ

2
m (m = 2, 3, 4) denotes the ratio of the variance of the experimental effect (i.e., random slope

variances σ2
sm) to the residual variance (random intercept variances σ2

m) in level-m units. σ2 =

σ2
1 + σ

2
2 + σ

2
3 + σ

2
4 is a variance of Y in a control group in this model (i.e., σ2 = var(Yi jkl|Xi jkl =

0)). See the footnote 4 on this point. Equation (7) indicates that random slope variances (σ2
sm =

σ2
mωm) at levels higher than the level of randomization (e.g., variances of the teaching effect among

districts (σ2
s4) and schools (σ2

s3) when classes (level-two) are randomized) inflate standard errors of

experimental effects estimates. In particular, in equation (7), ρ4 (or σ2
4, random intercept variances

or variances of educational achievement among districts in a control group) and ω4 (variances of

teaching effects among districts) are associated with the sizes of each level-4 unit (n1n2n3; e.g., the

number of students in each district) and thus they can be considered as factors that are influential for

standard errors in each randomization. Note that equation (7) is equivalent to (6) when ω2 = ω3 =

ω4 = 0 (i.e., there are no slope variances at each level). We discuss the derivations of these results

in Appendix A.

When covariates are included to reduce the magnitudes of random intercept or slope variances

at each level*5, the results of Dong and Maynard (2013) show that the standard errors of the estimate

*5 If level-one RBD is used in a four-level hierarchical model that assumes random slopes, an analysis model that includes
covariates can be expressed as

Yi jkl = (β0 + δXi jkl +

g1∑
p=1

β(I)
1pZp

i jkl +

g2∑
p=1

β(I)
2pZp

jkl +

g3∑
p=1

β(I)
3pZp

kl +

g4∑
p=1

β(I)
4pZp

l

+

g2∑
p=1

β(S )
2p Xi jklZ

p
jkl +

g3∑
p=1

β(S )
3p Xi jklZ

p
kl +

g4∑
p=1

β(S )
4p Xi jklZ

p
l ) + [(r jkl + rkl + rl)Xi jkl + (ei jkl + e jkl + ekl + el)].

Here, Zp
i jkl, Zp

jkl, Zp
kl and Zp

l are p-th covariates at the first, second, third, and fourth levels, respectively, and are assumed

to be independent of residuals. gm(m = 1, 2, 3, 4) denotes the number of covariates at level-m units. β(I)
mp (m = 1, 2, 3, 4)
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δ̂ in a four-level hierarchical model that assumes random slopes can be expressed as

se(δ̂) =



se(δ̂1) = σ
√

P(1−P)n1n2n3ρ4ω4(1−R2
s4)+P(1−P)n1n2ρ3ω3(1−R2

s3)+P(1−P)n1ρ2ω2(1−R2
s2)+ρ1(1−R2

1)
NP(1−P)

se(δ̂2) = σ
√

P(1−P)n1n2n3ρ4ω4(1−R2
s4)+P(1−P)n1n2ρ3ω3(1−R2

s3)+n1ρ2(1−R2
2)+ρ1(1−R2

1)
NP(1−P)

se(δ̂3) = σ
√

P(1−P)n1n2n3ρ4ω4(1−R2
s4)+n1n2ρ3(1−R2

3)+n1ρ2(1−R2
2)+ρ1(1−R2

1)
NP(1−P)

se(δ̂4) = σ
√

n1n2n3ρ4(1−R2
4)+n1n2ρ3(1−R2

3)+n1ρ2(1−R2
2)+ρ1(1−R2

1)
NP(1−P)

(8)

Here, R2
m (m = 1, 2, 3, 4) indicates the proportion of random intercept variances at level-m units

explained by level-m covariates (i.e., coefficient of determination for random intercepts). In other

words, 1 − R2
m reflects the magnitude of conditional random intercept variance after accounting

for covariates at level-m units. R2
sm (m = 2, 3, 4) indicates the proportion of the variance between

level-m units of the experimental effect (i.e., random slope variances) explained by level-m covari-

ates (i.e., coefficient of determination for random slopes). In other words, 1 − R2
sm reflects the

magnitude of conditional random slope variance after accounting for covariates at level-m units.

Therefore, in equation (8), σ2
m|z = σ

2
m(1 − R2

m) (m = 1, 2, 3, 4) indicates the (conditional) random

intercept variance between level-m units that cannot be explained by level-m covariates. Likewise,

and β(S )
mp(m = 2, 3, 4) denote p-th (fixed) regression coefficient to account for random intercept and slope variances at

level-m units, respectively. r jkl, rkl and rl are residuals indicating random slopes after including covariates at the
second, third, and fourth levels, respectively, and are assumed to be independent of Xi jkl and covariates. Additionally,
they are assumed to be distributed according to r jkl ∼ N(0, σ2

s2|z), rkl ∼ N(0, σ2
s3|z), and rl ∼ N(0, σ2

s4|z). Here, σ2
sm|z

(m = 2, 3, 4) are the (conditional) random slope variance between level-m units that cannot be explained by level-
m covariates. Likewise, ei jkl, e jkl, ekl and el are residuals indicating random intercepts after including covariates at
respective levels. Additionally, they are assumed to be distributed according to ei jkl ∼ N(0, σ2

1|z), e jkl ∼ N(0, σ2
2|z),

ekl ∼ N(0, σ2
3|z), and el ∼ N(0, σ2

4|z). Here, σ2
m|z (m = 1, 2, 3, 4) are the (conditional) random intercept variance

between level-m units that cannot be explained by level-m covariates. If a level-two RBD is used, this implies r jkl = 0,
indicating σ2

s2|z = 0. Likewise, when a level-three RBD is used, it means that r jkl = rkl = 0 and σ2
s2|z = σ

2
s3|z = 0.

Finally, when HD is used, we have r jkl = rkl = rl = 0 and σ2
s2|z = σ

2
s3|z = σ

2
s4|z = 0.
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σ2
sm|z = σ

2
mωm(1−R2

sm) = σ2
sm(1−R2

sm) (m = 2, 3, 4) indicates the (conditional) random slope variance

between level-m units that cannot be explained by level-m covariates. Thus, the essential difference

between equations (7) and (8) is that the former uses unconditional variances (i.e., σ2
m and σ2

sm)

while the latter uses conditional variances after including covariates (i.e., σ2
m|z and σ2

sm|z). Note that

in this model σ2 = σ2
1+σ

2
2+σ

2
3+σ

2
4 is variance of Y in control group (i.e., σ2 = var(Yi jkl|Xi jkl = 0)).

Obviously, larger R2
m and R2

sm can decrease the standard error of experimental effects estimates.

In particular, R2
4 (in HD) and R2

s4 (in RBD) are associated with the sizes of each level-4 unit (n1n2n3;

e.g., the number of students in each district), so they can be considered as factors that have a large

influence on standard errors. For the same reason, as in equation (7), ρ4 (or σ2
4: random intercept

variances, such as variances of educational achievement among districts in a control group), ω4 (vari-

ances of teaching effects among districts), and P (the proportion of units in the experimental group)

are also influential for standard errors in RBD. In HD, ρ4 and P are influential on standard errors

(i.e., se(δ̂4)). Although the factors that are influential on standard errors are different according to

research designs, it is common that precise specifications of these indices are especially important in

estimating required sizes. Readers can see Dong and Maynard (2013) for a more detailed explana-

tion regarding a four-level hierarchical model that assumes random slopes with covariates. We also

discuss the derivations of these results in Appendix A.



Sample size determination for hierarchical data 15

3 Generalized formulas for desired width of confidence interval

A 100(1 − α)% confidence interval for δ is expressed as

δ̂ − t1−α/2,d f se(δ̂) ≦ δ ≦ δ̂ + t1−α/2,d f se(δ̂). (9)

Here, tα,d f denotes the 100α% point of a t-distribution with d f degrees of freedom. The value for

d f differs according to the difference in levels of randomization: d f = n4 − g4 − 1 for RBD, and

d f = n4 − g4 − 2 for HD, respectively, where g4 denotes the number of covariates in the fourth

level. If only the population of each district is included as a covariate for district level, g4 = 1. From

equation (9), the width of a confidence interval can be evaluated as

2t1−α/2,d f se(δ̂). (10)

Note that this is also the width of the confidence interval for ∆̂ when σ2 (indicating variance of

outcome if random slopes are not assumed, or variance of outcome in control group if assumed) is

set to 1 (i.e., standardized). When the desired width of a confidence interval is specified as L, using

equations (8) and (10), the relation 2t1−α/2,d f se(δ̂) ≤ L can be re-expressed for each level unit in
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level-one RBD as

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

P(1 − P)[L2n2n3n4 − 4(1 − R2
s4)n2n3ρ4ω4t2

1−α/2,d f − 4(1 − R2
s3)n2ρ3ω3t2

1−α/2,d f − 4(1 − R2
s2)ρ2ω2t2

1−α/2,d f ]
, (11)

n2 >
4σ2[P(1 − P)(1 − R2

s2)n1ρ2ω2 + (1 − R2
1)ρ1]t2

1−α/2,d f

P(1 − P)n1[L2n3n4 − 4(1 − R2
s4)n3ρ4ω4t2

1−α/2,d f − 4(1 − R2
s3)ρ3ω3t2

1−α/2,d f ]
, (12)

n3 >
4σ2[P(1 − P)(1 − R2

s3)n1n2ρ3ω3 + P(1 − P)(1 − R2
s2)n1ρ2ω2 + (1 − R2

1)ρ1]t2
1−α/2,d f

P(1 − P)n1n2[L2n4 − 4(1 − R2
s4)ρ4ω4t2

1−α/2,d f ]
, (13)

n4 >
4σ2[P(1 − P)(1 − R2

s4)n1n2n3ρ4ω4 + P(1 − P)(1 − R2
s3)n1n2ρ3ω3 + P(1 − P)(1 − R2

s2)n1ρ2ω2 + (1 − R2
1)ρ1]t2

1−α/2,d f

L2P(1 − P)n1n2n3
,

(14)

The corresponding results are

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

L2P(1 − P)n2n3n4 − 4P(1 − P)(1 − R2
s4)n2n3ρ4ω4t2

1−α/2,d f − 4P(1 − P)(1 − R2
s3)n2ρ3ω3t2

1−α/2,d f − 4(1 − R2
2)ρ2t2

1−α/2,d f

,

(15)

n2 >
4σ2[(1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

P(1 − P)n1[L2n3n4 − 4(1 − R2
s4)n3ρ4ω4t2

1−α/2,d f − 4(1 − R2
s3)ρ3ω3t2

1−α/2,d f ]
, (16)

n3 >
4σ2[P(1 − P)(1 − R2

s3)n1n2ρ3ω3 + (1 − R2
2)n1ρ2 + (1 − R2

1)ρ1]t2
1−α/2,d f

P(1 − P)n1n2[L2n4 − 4(1 − R2
s4)ρ4ω4t2

1−α/2,d f ]
, (17)

n4 >
4σ2[P(1 − P)(1 − R2

s4)n1n2n3ρ4ω4 + P(1 − P)(1 − R2
s3)n1n2ρ3ω3 + (1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

L2P(1 − P)n1n2n3
(18)

for level-two RBD,

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

L2P(1 − P)n2n3n4 − 4P(1 − P)(1 − R2
s4)n2n3ρ4ω4t2

1−α/2,d f − 4(1 − R2
3)n2ρ3t2

1−α/2,d f − 4(1 − R2
2)ρ2t2

1−α/2,d f

,

(19)

n2 >
4σ2[(1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

n1[L2P(1 − P)n3n4 − 4P(1 − P)(1 − R2
s4)n3ρ4ω4t2

1−α/2,d f − 4(1 − R2
3)ρ3t2

1−α/2,d f ]
, (20)

n3 >
4σ2[(1 − R2

3)n1n2ρ3 + (1 − R2
2)n1ρ2 + (1 − R2

1)ρ1]t2
1−α/2,d f

P(1 − P)n1n2[L2n4 − 4(1 − R2
s4)ρ4ω4t2

1−α/2,d f ]
, (21)

n4 >
4σ2[P(1 − P)(1 − R2

s4)n1n2n3ρ4ω4 + (1 − R2
3)n1n2ρ3 + (1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

L2P(1 − P)n1n2n3
(22)
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for level-three RBD, and

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

L2P(1 − P)n2n3n4 − 4(1 − R2
4)n2n3ρ4t2

1−α/2,d f − 4(1 − R2
3)n2ρ3t2

1−α/2,d f − 4(1 − R2
2)ρ2t2

1−α/2,d f

, (23)

n2 >
4σ2[(1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

n1[L2P(1 − P)n3n4 − 4(1 − R2
4)n3ρ4t2

1−α/2,d f − 4(1 − R2
3)ρ3t2

1−α/2,d f ]
, (24)

n3 >
4σ2[(1 − R2

3)n1n2ρ3 + (1 − R2
2)n1ρ2 + (1 − R2

1)ρ1]t2
1−α/2,d f

n1n2[L2P(1 − P)n4 − 4(1 − R2
4)ρ4t2

1−α/2,d f ]
, (25)

n4 >
4σ2[(1 − R2

4)n1n2n3ρ4 + (1 − R2
3)n1n2ρ3 + (1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

L2P(1 − P)n1n2n3
(26)

for HD. Because d f is a function of n4, the above formulas relating to n4 (i.e., equations 14, 18,

22, and 26) cannot be used directly. However, as we will show in the example below, the minimum

required n4 can be iteratively calculated from these formulas using the R code provided in the Online

Supporting Materials. Appendix B provides similar formulas as well as standard errors in cases

where the number of levels is either two or three.

Note that researchers can evaluate the required sizes from formulas to achieve a desired width

of the confidence interval for both raw experimental effects (δ) and standardized experimental effects

(i.e., standardized effect size ∆), by adjusting the values of σ2 and L. Specifically, the latter can be

obtained by setting σ2 (indicating variance of outcome if random slopes are not assumed, or variance

of outcome in control group if assumed) to 1, as we will illustrate in the examples below.

4 Examples

Here, we consider a hypothetical research study that investigates whether daily life guidance

from teachers discourages late bedtimes among adolescent students (level-1) in classes (level-2) in
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schools (level-3) in districts (level-4). Sleep research has shown that a late bedtime may have a sig-

nificant effect on the mental health of adolescents (e.g., Gangwisch, Babiss, Malaspina et al., 2010;

Merikanto, Lahti, Puusniekka et al., 2013; Tochigi, Usami, Matamura et al., 2015).

We assume that the mental health of students is evaluated using the General Health Question-

naire 12 (GHQ12; Goldberg, Rickels, Downing et al., 1976), which is one of the most widely used

self-reporting tools used to screen for non-psychotic psychiatric symptoms, particularly for symp-

toms of anxiety and depression (e.g., Tochigi et al., 2015). We also assume that classes from different

schools and districts are assigned to either experimental or control groups to evaluate the effect of

receiving life guidance from a teacher (i.e., we use RBD with level-two randomization). Previous

studies (e.g., Tochigi et al., 2015) have found relatively small effect sizes for relations between late

bedtime and mental health (from 0.06 to 0.13 for standardized cross-lagged coefficients for samples

of adolescents in grades 7–12), so in this example the size of the standardized experimental effect ∆

is assumed to be ∆ = 0.20. It is widely recognized that there are large individual differences in men-

tal health in adolescents (e.g., Matamura et al., 2014; Tochigi et al., 2015), so the variance of means

of GHQ scores (in a control group) is assumed to be large among students within classes, while vari-

ances are assumed to be relatively small among classes, schools and districts. To characterize this,

residual variances (random intercept variances) are specified as σ2
1 = 4 (i.e., student differences),

σ2
2 = 0.20 (i.e., class differences), σ2

3 = 0.05 (i.e., school differences), and σ2
4 = 0.05 (i.e., district

differences). Consequently, σ2 = 4 + 0.20 + 0.05 + 0.05 = 4.30 (σ = 2.074), and the proportions of

these variances are ρ1 = 4/(4+0.20+0.05+0.05) = 0.930, ρ2 = 0.20/(4+0.20+0.05+0.05) = 0.046,
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and ρ3 = ρ4 = 0.05/(4+0.20+0.05+0.05) = 0.012. These settings imply that the raw experimental

effect is δ = ∆ × σ = 0.20 × 2.074 = 0.415.

Suppose that the desired width of a confidence interval for the standardized experimental ef-

fect is set as L = 0.20 (i.e., aiming to achieve a confidence interval like 0.20 − 0.10 = 0.10 ≤

∆ ≤ 0.30 = 0.20 + 0.10, this setting is equivalent to the confidence interval of raw experimen-

tal effect: 0.415 − 0.10 × 2.074 = 0.208 ≤ δ ≤ 0.622 = 0.415 + 0.10 × 2.074, indicating

L = 2 × 0.10 × 2.074 = 0.415), and that the two-sided significance level is set as α = .05. Un-

der this RBD with level-two randomization with n1 = 30 (expected harmonic mean of the number of

sampled students in each class), n2 = 6 (expected harmonic mean of the number of sampled classes

in each school), n3 = 5 (expected harmonic mean of the number of sampled schools in each district),

P = 0.5 (i.e., balanced design), R2
1 = R2

2 = R2
s3 = R2

s4 = 0.25 (i.e., the proportions of variances

for random intercepts or slopes in level-m units explained by level-m covariates are relatively large),

g4=3 (i.e., the number of district level covariates is three), ω3 = ω4 = 0.10 (i.e., random slope

variances are present but are much smaller than the random intercept variances at each level), taken

as fixed, the R function L4random2n4 based on equation (18) provided in the Online Supporting

Materials gives

L4random2n4(L=0.20,alpha=0.05,g4=3,n1=30,n2=6,n3=5,rho1=0.930,rho2=0.046,rho3=0.012,rho4=0.012,R1sq=0.25,R2sq=0.25,Rs3sq=0.25,Rs4sq=0.25,w3=0.10,w4=0.10,P=0.5,sigma=1)

[1] 8
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indicating that the minimum number of required districts (i.e., n4) is 8 for a confidence interval of ∆

(i.e., σ2 = 1).

As noted above, in RBD R2
s4, ρ4, ω4, and P are influential on standard errors in estimating n4,

so precise specifications of these indices are especially important. If we evaluate the required size

besed on the confidence interval of raw experimental effect δ, by setting L = 0.415 and σ = 2.074

the same results can be obtained as

L4random2n4(L=0.415,alpha=0.05,g4=3,n1=30,n2=6,n3=5,rho1=0.930,rho2=0.046,rho3=0.012,rho4=0.012,R1sq=0.25,R2sq=0.25,Rs3sq=0.25,Rs4sq=0.25,w3=0.10,w4=0.10,P=0.5,sigma=2.074)

[1] 8

Because useful information about these indices are not readily available from previous research re-

sults, in this example the minimum required n4 is again calculated using the same function L4random2n4

under the various conditions of R2
s4 = 0.10, 0.20, 0.30, 0.40, 0.50 andω4 = 0.10, 0.20, 0.30, 0.40, 0.50,

with other conditions remaining unchanged. As we have observed in equation (8), these indices are

associated with the sizes of each level-4 unit (n1n2n3; e.g., the number of students in each district),

so they can be considered as factors that have a large influence on the calculation results of required

size. The results indicate that the minimum required number ranges from 7 to 9. Thus, if researchers

choose to take a conservative approach and assume lower R2
s4 or higher ω4, sampling n4 = 9 districts

might be preferable. This result also indicates that the minimum required n4 does not change much

(i.e., n4 = 8 or n4 = 9) even when researchers cannot specify precise values for these indices. The

issue regarding precise specification of indices will be discussed in more detail later.
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If the number of levels is three with level-two randomization (e.g., students are nested within

classes, and classes are nested in schools), another R function L3random2n3 provided in the Online

Supporting Materials can be used to calculate required sizes in level-3 units. Under the same con-

ditions as in the previous example (i.e., L = 0.20 for the standardized experimental effect, α = .05,

g3 = 3, n1 = 30 (for the number of students), n2 = 6 (for the number of classes), ρ1 = 0.070/(1 −

0.012) = 0.941, ρ2 = 0.046/(1 − 0.012) = 0.047, ρ3 = 1 − ρ1 − ρ2 = 0.012/(1 − 0.012) = 0.012,

R2
1 = R2

2 = R2
s3 = 0.25, ω3 = 0.10, and P = 0.5), then L3random2n3 gives

L3random2n3(L=0.20,alpha=0.05,g3=3,n1=30,n2=6,rho1=0.941,rho2=0.047,rho3=0.012,R1sq=0.25,R2sq=0.25,Rs3sq=0.25,w3=0.10,P=0.5,sigma=1)

[1] 19

indicating that the minimum number of required schools (i.e., n3) is 19. Now consider the situ-

ation where the proportion of teachers specializing in health and physical education is limited in

each school by setting P = 0.1. In this case, the total number of required schools (n3) is calculated

to be 45, which is more than double the number calculated for balanced designs, indicating that a

difference in the value of P has a large effect on the estimation results.
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5 Some mathematical results regarding standard errors and

required sizes

5.1 Comparing standard errors in each design

From equation (8),

se2(δ̂2) − se2(δ̂1) =
σ2ρ2[(1 − R2

2) − P(1 − P)(1 − R2
s2)ω2]

n2n3n4P(1 − P)
, (27)

se2(δ̂3) − se2(δ̂2) =
σ2ρ3[(1 − R2

3) − P(1 − P)(1 − R2
s3)ω3]

n3n4P(1 − P)
, (28)

se2(δ̂4) − se2(δ̂3) =
σ2ρ4[(1 − R2

4) − P(1 − P)(1 − R2
s4)ω4]

n4P(1 − P)
. (29)

It is known that the relations se(δ̂4) ≥ se(δ̂3) ≥ se(δ̂2) ≥ se(δ̂1) are always fulfilled when a random

intercept model is used (e.g., ω2 = ω3 = ω4 = 0; see Usami, 2014, for a three-level hierarchical

model). However, when slope variances are present, such a simple relation is satisfied only when

ωm satisfies

ωm ≤
1 − R2

m

P(1 − P)(1 − R2
sm)

(30)

for m = 2, 3, 4.
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5.2 Relative effects of changing indices on standard errors

From equation (8), it can be shown that

∂se2(δ̂1)
∂ρ1

=
∂se2(δ̂2)
∂ρ1

=
∂se2(δ̂3)
∂ρ1

=
∂se2(δ̂4)
∂ρ1

≥ 0, (31)

∂se2(δ̂1)
∂ρ2

≥ ∂se2(δ̂2)
∂ρ2

=
∂se2(δ̂3)
∂ρ2

=
∂se2(δ̂4)
∂ρ2

≥ 0, (32)

∂se2(δ̂1)
∂ρ3

=
∂se2(δ̂2)
∂ρ3

≥ ∂se2(δ̂3)
∂ρ3

=
∂se2(δ̂4)
∂ρ3

≥ 0, (33)

∂se2(δ̂1)
∂ρ4

=
∂se2(δ̂2)
∂ρ4

=
∂se2(δ̂3)
∂ρ4

≥ ∂se2(δ̂4)
∂ρ4

≥ 0. (34)

In a four-level hierarchical design, increasing residual variances (random intercept variances) al-

ways increases the standard errors of experimental effect estimates, and the influences are equal or

larger in lower-level randomization. Note that such a magnitude relationship cannot be observed

when comparing the influences of residual variances from different levels (i.e., comparing ∂se2(δ̂p)
∂ρm

and ∂se2(δ̂p)
∂ρm+1

for p = 1, 2, 3, 4 and m = 1, 2, 3), due to differences in magnitudes of determination

coefficients (R2) and slope variances (ω) between different levels.

Likewise, from equation (8) it can be shown that the effect of changes in the number of units
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is given by

∂se2(δ̂4)
∂n1

=
∂se2(δ̂3)
∂n1

=
∂se2(δ̂2)
∂n1

=
∂se2(δ̂1)
∂n1

, (35)

∂se2(δ̂4)
∂n2

=
∂se2(δ̂3)
∂n2

=
∂se2(δ̂2)
∂n2

,
∂se2(δ̂1)
∂n2

, (36)

∂se2(δ̂4)
∂n3

=
∂se2(δ̂3)
∂n3

,
∂se2(δ̂2)
∂n3

,
∂se2(δ̂1)
∂n3

, (37)

∂se2(δ̂4)
∂n4

,
∂se2(δ̂3)
∂n4

,
∂se2(δ̂2)
∂n4

,
∂se2(δ̂1)
∂n4

. (38)

Obviously, increasing the sizes of units always decreases standard errors of an experimental effect

estimate for any randomization. From equations (35)–(38), it can be shown that the effects of in-

creasing level-m units are equal in m′-level randomization for every m that satisfies m′ ≥ m, but are

different when m′ < m. Note that the relative effects of the sizes of different levels in each random-

ization cannot be simply evaluated, because the magnitude relation depends on the unit size at each

level.

For the impact of proportions of experimental group size (i.e., of setting P at different values),

the following relations can be derived:

∂se2(δ̂4)
∂P

≤ ∂se2(δ̂3)
∂P

≤ ∂se2(δ̂2)
∂P

≤ ∂se2(δ̂1)
∂P

≤ 0 (0 ≤ P ≤ 0.5) (39)

∂se2(δ̂4)
∂P

≥ ∂se2(δ̂3)
∂P

≥ ∂se2(δ̂2)
∂P

≥ ∂se2(δ̂1)
∂P

≥ 0 (0.5 ≤ P ≤ 1). (40)

Thus, if 0 ≤ P ≤ 0.5, then increasing P has a stronger impact in designs with higher-level random-

ization, and the standard error decreases with each randomization. When 0.5 ≤ P ≤ 1, increasing
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P also has a stronger impact in designs with higher-level randomization, but under this condition

the standard error increases with each randomization. This result indicates that the impact of P on

standard errors is most dominant in HD.

Next, regarding the impact of changes of coefficients of determination for random intercept R2,

the following relations can be derived:

∂se2(δ̂4)
∂R2

1

=
∂se2(δ̂3)
∂R2

1

=
∂se2(δ̂2)
∂R2

1

=
∂se2(δ̂1)
∂R2

1

≤ 0 (41)

∂se2(δ̂4)
∂R2

2

=
∂se2(δ̂3)
∂R2

2

=
∂se2(δ̂2)
∂R2

2

≤ ∂se2(δ̂1)
∂R2

2

= 0 (42)

∂se2(δ̂4)
∂R2

3

=
∂se2(δ̂3)
∂R2

3

≤ ∂se2(δ̂2)
∂R2

3

=
∂se2(δ̂1)
∂R2

3

= 0 (43)

∂se2(δ̂4)
∂R2

4

≤ ∂se2(δ̂3)
∂R2

4

=
∂se2(δ̂2)
∂R2

4

=
∂se2(δ̂1)
∂R2

4

= 0 (44)

From equations (41)–(44), the effects of increasing level-m coefficients of determination are nonzero

and equal between m′-level and m′ + 1 randomizations when m′ ≥ m. However, the effect is 0 when

m′ < m, because standard errors are unrelated to this coefficient of determination under such condi-

tions. Note that the influences of increasing level-m and level-(m + 1) coefficients of determination

for random intercepts are different in m′-level randomization when m′ > m, because the magnitude

relation depends on the unit size (n) and the residual variance (ρ) at each level.

Similarly, the following relations can be derived for the impact of the coefficient of determina-
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tion for random slope (R2
s):

∂se2(δ̂4)
∂R2

s2

=
∂se2(δ̂3)
∂R2

s2

=
∂se2(δ̂2)
∂R2

s2

= 0 ≥ ∂se2(δ̂1)
∂R2

s2

(45)

∂se2(δ̂4)
∂R2

s3

=
∂se2(δ̂3)
∂R2

s3

= 0 ≥ ∂se2(δ̂2)
∂R2

s3

=
∂se2(δ̂1)
∂R2

s3

(46)

∂se2(δ̂4)
∂R2

s4

= 0 ≥ ∂se2(δ̂3)
∂R2

s4

=
∂se2(δ̂2)
∂R2

s4

=
∂se2(δ̂1)
∂R2

s4

(47)

From equations (45)–(47), the effects of increasing level-m coefficients of determination for

slopes are nonzero but equal between m′-level and m′+1 randomizations when m′ < m−1. However,

the effect is 0 when m′ ≥ m, because standard errors are unrelated to this coefficient of determination

under such conditions. Note that the influences of increasing level-m and level-(m+1) coefficients of

determination in slopes are different in m′-level randomization when m′ < m, because the magnitude

relation depends on the unit size (n), the slope variance (ω), and the residual variance (ρ) at each

level.

Finally, regarding the impact of slope variances (ω), the following relations can be derived:

∂se2(δ̂1)
∂ω2

≥ ∂se2(δ̂2)
∂ω2

=
∂se2(δ̂3)
∂ω2

=
∂se2(δ̂4)
∂ω2

= 0 (48)

∂se2(δ̂1)
∂ω3

=
∂se2(δ̂2)
∂ω3

≥ ∂se2(δ̂3)
∂ω3

=
∂se2(δ̂4)
∂ω3

= 0 (49)

∂se2(δ̂1)
∂ω4

=
∂se2(δ̂2)
∂ω4

=
∂se2(δ̂3)
∂ω4

≥ ∂se2(δ̂4)
∂ω4

= 0 (50)
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From equations (48)–(50), the effects of increasing level-m slope variances are nonzero but

equal in m′-level and m′+1 randomizations when m′ < m−1. However, the effect is 0 when m′ ≥ m,

because standard errors are unrelated to this slope variance under such conditions. Note that the

effects of increasing level-m and level-m + 1 slope variances are different in m′-level randomization

when m′ < m, because the magnitude relation depends on the unit size (n), the coefficients of

determination for slopes (R2
s), and the residual variance (ρ) at each level.

5.3 Asymptotic standard errors

From equation (8), the following lower limits for standard errors can be obtained:

lim
n3→∞

lim
n2→∞

lim
n1→∞

se2(δ̂1) =
σ2(1 − R2

s4)ρ4ω4

n4
, (51)

lim
n3→∞

lim
n2→∞

lim
n1→∞

se2(δ̂2) =
σ2(1 − R2

s4)ρ4ω4

n4
, (52)

lim
n3→∞

lim
n2→∞

lim
n1→∞

se2(δ̂3) =
σ2(1 − R2

s4)ρ4ω4

n4
, (53)

lim
n3→∞

lim
n2→∞

lim
n1→∞

se2(δ̂4) =
σ2(1 − R2

4)ρ4

P(1 − P)n4
. (54)

From equations (51)–(54), the minimum required numbers in the highest units (n4) become

n4 ≥
4σ2(1 − R2

s4)ρ4ω4

L2 (55)



Sample size determination for hierarchical data 28

in one-, two-, and level-three RBD, and

n4 ≥
4σ2(1 − R2

4)ρ4

L2P(1 − P)
(56)

in HD. Specifically, if the numbers of level-4 units (e.g., districts, as in the example of the previous

section) do not satisfy the above relations, then the confidence interval will not have the desired

width L on average, even when the total amount of data from lower units (i.e., n1n2n3; total number

of students in each district) becomes infinite. From the right-hand sides of equations (55)–(56), these

minimum required sizes become easier to achieve when L and the coefficients of determination are

larger (or, residual variances and slope variances are sufficiently small). In HD, although minimum

required numbers are unrelated to ω4, the proportion of the experimental group size P does have an

influence and the minimum number becomes smallest when P = 0.5 (i.e., balanced design). When

the number of levels is 3, similar results can be obtained. Namely, the minimum required numbers

in the highest units (n3) are

n3 ≥
4σ2(1 − R2

s3)ρ3ω3

L2 (57)

in one- and level-two RBD, respectively, and

n3 ≥
4σ2(1 − R2

3)ρ3

L2P(1 − P)
(58)
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in HD. Similarly, when the number of levels is 2, the minimum required numbers in the highest units

(n2) are

n2 ≥
4σ2(1 − R2

s2)ρ2ω2

L2 (59)

in level-one RBD, and

n2 ≥
4σ2(1 − R2

2)ρ2

L2P(1 − P)
(60)

in HD. These relations will help researchers to minimize the risk of conducting experiments that

are statistically unlikely to show the presence of an experimental effect. Table 2 provides minimum

required values of level-M units (nM , M = 2, 3, 4) in RBD when the number of levels is M under

various specifications of ρM , R2
sM , ωM , and L (the two-sided significance level is α = .05). Table

3 provides similar minimum required values for level-M units in HD when the number of levels is

M under various specifications of ρM , R2
M , P and L. Note that the same tables can be used whether

the number of levels is three or two because equations (55), (57), and (59), and equations (56), (58),

and (60), are equivalent except for the indices of levels. Thus, if researchers conduct an RBD study

when the number of levels is M = 4, to calculate minimum required values from Table 2, specifying

values of ρ4, R2
s4, ω4, and L is sufficient, while setting ρ3, R2

s3, ω3, and L is required if researchers

conduct an RBD study when the number of levels is M = 3.

From Table 2, it can be observed that a smaller desired width of confidence interval L, such
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as 0.1 and 0.2, might require unrealistically large minimum required values, so including covariates

that can reduce the magnitude of random intercept or slope variances is especially important. Note

that in RBD minimum required values are always 1 (i.e., there are essentially no lower limits) when

a random intercept model can be assumed, because ωM = 0 in such cases (e.g., Usami, 2014). The

magnitude of the heterogeneity of the experimental effect (random slopes) is thus related to mini-

mum required values, indicating that researchers should correctly specify the analysis model (e.g.,

whether random slopes should be assumed or not) to obtain precise estimates of required sizes in

using formulas.

One notable difference between Table 2 and Table 3 (i.e., RBD or HD) is that HD demands

much larger required values on average. In addition, in HD, minimum required values are a function

of R2
m (rather than R2

sm) and P, and for extreme values of P (P = 0 or P = 1) the minimum required

values become larger. Thus, including useful covariates and choosing a balanced design (P = 0.5)

are especially important in HD to achieve minimum required values that are realistic if researchers

demand high accuracy in estimating experimental effects (i.e., a narrower width of confidence in-

terval L). Note that unlike RBD minimum required values are related to random intercept variance

(i.e., σ2(1 − R2
M)ρM) rather than random slope variance (i.e., σ2(1 − R2

sM)ρMωM) in HD, and the

right sides of equations (56), (58) and (60) do not become 0 when random intercept model is data

generation model (i.e., ωM = 0). Therefore, when HD is chosen for experimental design, regard-

less of the choice of analysis model (i.e., random intercept model or random intercept and slope

model), researchers should always take care to satisfy this minimum required value before starting
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experiments. The choice of RBD or HD thus yields different consequences in various aspects of

sample size determination, and in many cases RBD is preferable to HD in consideration of required

sizes (i.e., smaller standard errors) unless slope variances at the highest level (e.g., ω4 in a four-level

design) are very large (see equation (8) regarding this point).

5.4 Cases with more than four levels

As indicated by the results provided in Appendix A, the standard error for an experimental

effect estimate se(δm|M) in a design with level-m (m = 1, 2, . . . ,M; M is the number of levels)

randomization can be derived as

se(δm|M) = σ

√
fm

N∗P(1 − P)
, (61)

where N∗ = ΠM
m∗=1n∗m, and

fm =
M∑

m∗=m+1

[
P(1 − P)(Πm∗−1

m∗∗=1nm∗∗ )ρm∗ωm∗ (1 − R2
sm∗ )
]
+

m∑
m∗=2

[
(Πm∗−1

m∗∗=1nm∗∗ )ρm∗ (1 − R2
m∗ )
]
+ ρ1(1 − R2

1).

(62)

Naturally, when M = 4 this corresponds to equation (8). By applying the same procedure discussed

in the previous section, some generalized results can be derived for designs when the number of

levels is more than four. For example, for the influence of residual variances (random intercept
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variances) on standard errors, the relations

∂se(δ1|M)
∂ρm∗

= · · · = ∂se(δm∗−2|M)
∂ρm∗

=
∂se(δm∗−1|M)
∂ρm∗

≥ ∂se(δm∗ |M)
∂ρm∗

= · · · = ∂se(δM−1|M)
∂ρm∗

=
∂se(δM|M)
∂ρm∗

≥ 0

(63)

can be obtained. Additionally, the minimum required values nM given a number of levels M can be

expressed through equations similar to (55)–(60), as

nM ≥
4σ2(1 − R2

sM)ρMωM

L2 (64)

in level-m RBD (m = 1, 2, . . . ,M − 1), and

nM ≥
4σ2(1 − R2

M)ρM

L2P(1 − P)
(65)

in HD.

6 Discussion

The present research has provided closed-form and iterative sample size determination formu-

las that can be used to ensure the desired width of a confidence interval for hierarchical data. These

formulas have been derived for a four-level hierarchical model that assumes random slopes and co-

variates, considering both balanced and unbalanced designs. Examples of estimating the required

sample size are also shown using R functions provided in the Online Supporting Materials. We have
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also addressed several mathematical properties of required sample sizes via standard errors of exper-

imental effect estimates: the relative impact of several indices (e.g., random intercept/slope variance

at each level) on standard errors, asymptotic standard errors, and generalized expressions of standard

errors for designs with any-level randomization under any number of levels.

We have seen many differences in RBD and HD. For example, the factors that are influential

on standard errors are different according to research designs: In RBD, coefficients of determination

for random slope at the highest level (R2
s4), proportion of residual variances (random intercept vari-

ances) at the highest level (ρ4), the ratio of the variance of the experimental effect (i.e., random slope

variances) at the highest level (ω4), and P are more influential on standard errors, while coefficients

of determination for random intercept at the highest level (R2
4), ρ4, and P are more influential in HD.

Because standard errors of experimental effect estimates in HD are unrelated to slope variances, the

impact of ω can be ignored in this design. It was also addressed in Section 5 that the influences of

P on standard errors are largest in HD, and that asymptotic standard errors and minimum required

values at the highest level when the total number of units at lower levels are infinite are different

between RBD and HD. On this point, Tables 2 and 3 will help researchers to minimize the risk of

conducting experiments that are statistically unlikely to show the presence of an experimental effect.

Table 4 summarizes the differences between RBD and HD. In addition to finding better research de-

signs, the present investigation also helps to clarify the relative importance of accurate specification

of each index (or parameter), contributing to making the whole procedure of sample size determina-

tion more efficient.
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Although the factors that are influential on standard errors are different according to research

designs, it is common that precise specifications of indices are important in estimating required sizes.

As illustrated in the example, we believe that one of the most useful and convenient approaches is

to calculate the required sizes under the various conditions of these indices, because this can reduce

the risk of obtaining standard errors that are unexpectedly large. In addition, including covariates

that can explain the variance of outcomes (i.e. reducing the magnitude of random intercept or slope

variances) is useful. We also believe that reporting the estimates of parameters and indices is highly

desirable, and the accumulation of such information in each research area (see, e.g., Spybrook, 2013,

Spybrook & Kelcey, 2016 and Westine, Spybrook, and Taylor, 2013 for examples and discussion)

would aid researchers to better evaluate required sample sizes for future research.

There remain important areas for future development. First, although we assume continuous

outcomes in a two-group comparison, the extension to formulas for an arbitrary number of groups,

and to cases in which non-continuous outcomes (e.g., binary, ordered, count, rate, time-to-event

data) can also be straightforwardly derived (e.g., Usami, 2011a; Ahn, Heo & Zhang, 2014; Rutter-

ford, Copas & Eldridge, 2015 and references therein), and such extensions must be an intriguing

topic. Another important research topic is the extension of this work to other multilevel modelling

approaches, such as cross-classified models (e.g., Rasbash & Browne, 2001; Raudenbush & Bryk,

2002) and contextual models (e.g., Lüdtke et al., 2008), because the issues of sample size determina-

tion, bias, and Type-1 error rates of experimental effects or contextual effects have recently attracted

attention in multiple fields of behavioural and psychological science (e.g., Baayen, Davidson, &
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Bates, 2008; Judd, Westfall, & Kenny, 2012, 2017; Lüdtke et al., 2008; Murayama, Sakaki, Yan, &

Smith, 2014, Usami, 2017).
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8 Appendix A: Standard errors of experimental effect δ̂

To derive the standard errors of experimental effect δ̂ in a four-level random intercept model,

we consider the matrix form of equation (1):

Y = X̃β + ϵ̃. (66)

Here, β = (β0, δ)′ and Y is an (n1 × n2 × n3 × n4) × 1 vector with its elements arranged as Y =

(Y′1, . . . ,Y′l, . . . ,Y′n4 )′, where Yl = (Y′1l, . . . ,Y′kl, . . . ,Y′n3 l)′ and Ykl = (Y′1kl, . . . ,Y′jkl, . . . ,Y′n2 kl)′,

giving Y jkl = (Y1 jkl, . . . , Yi jkl, . . . , Yn1 jkl)′. X̃ = (1N, X) is an (n1 × n2 × n3 × n4) × 2 matrix and X is

an (n1 × n2 × n3 × n4) × 1 vector that includes the information of Xi jkl. The error term ϵ̃ is also an

(n1 × n2 × n3 × n4) × 1 vector that includes information of ẽi jkl = el + ekl + e jkl + ei jkl.

From equation (3) and the relations σ2 = σ2
1 + σ

2
2 + σ

2
3 + σ

2
4 and ρm = σ

2
m/σ

2 (m = 1, 2, 3, 4),

it can be shown that ẽi jkl is distributed as ẽi jkl ∼ N(0, Σ̃), where

Σ̃ = In4 ⊗ Σ, (67)

Σ = σ2
41n1 n2 n3 1′n1 n2 n3 + In3 ⊗ (σ2

31n1 n2 1′n1 n2 ) + In2 n3 ⊗ (σ2
21n1 1′n1 ) + σ2

1In1 n2 n3

= σ2[ρ41n1 n2 n3 1′n1 n2 n3 + In3 ⊗ (ρ31n1 n2 1′n1 n2 ) + In2 n3 ⊗ (ρ21n1 1′n1 ) + ρ1In1 n2 n3 )]. (68)

Here, we assume that σ2
1 ≥ 0, σ2

2 ≥ 0, σ2
3 ≥ 0, and σ2

4 ≥ 0, and that the inverse matrix of Σ (denoted

by Σ−1) exists. Let the diagonal elements of Σ−1 be σ(1), the off-diagonal elements denoting the
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same level-2 unit in Σ−1 be σ(2), and the off-block diagonal elements denoting the same level-3 and

level-4 units in Σ−1 be σ(3) and σ(4), respectively. Comparing the left- and right-hand sides of the

identity ΣΣ−1 = I, the following equations are obtained:

σ2[σ(1) + (n1 − 1)(ρ2 + ρ3 + ρ4)σ(2) + [n1(n2 − 1)](ρ3 + ρ4)σ(3) + [n1n2(n3 − 1)]ρ4σ
(4)] = 1,

σ2[σ(2) + (ρ2 + ρ3 + ρ4)σ(1) + (n1 − 2)(ρ2 + ρ3 + ρ4)σ(2) + [n1(n2 − 1)](ρ3 + ρ4)σ(3) + [n1n2(n3 − 1)]ρ4σ
(4)] = 0,

σ2[σ(3) + (n1 − 1)(ρ2 + ρ3 + ρ4)σ(3) + n1(n2 − 2)(ρ3 + ρ4)σ(3) + (ρ3 + ρ4)[σ(1) + (n1 − 1)σ(2)] + [n1n2(n3 − 1)]ρ4σ
(4)] = 0,

σ2[σ(4) + (n1 − 1)(ρ2 + ρ3 + ρ4)σ(4) + n1(n2 − 1)(ρ3 + ρ4)σ(4) + n1n2(n3 − 2)ρ4σ
(4) + ρ4[σ(1) + (n1 − 1)σ(2) + n1(n2 − 1)σ(3)]] = 0.

(69)

These equations can be rewritten as

σ(1) = σ(2) +
1
f1
, σ(2) = σ(3) − ρ2

f1 f2
, σ(3) = σ(4) − ρ3

f2 f3
, σ(4) = − ρ4

f3 f4
, (70)

where

f1 = σ2ρ1

f2 = σ2[n1ρ2 + ρ1]

f3 = σ2[n1n2ρ3 + n1ρ2 + ρ1]

f4 = σ2[n1n2n3ρ4 + n1n2ρ3 + n1ρ2 + ρ1]. (71)



Sample size determination for hierarchical data 45

Simple calculation shows that f1, f2, f3, and f4 can also be expressed as functions of σ(1), σ(2), σ(3),

and σ(4), as follows.

f1 =
1

σ(1) − σ(2)

f2 =
1

σ(1) + (n1 − 1)σ(2) − n1σ(3)

f3 =
1

σ(1) + (n1 − 1)σ(2) + n1(n2 − 1)σ(3) − n1n2σ(4)

f4 =
1

σ(1) + (n1 − 1)σ(2) + n1(n2 − 1)σ(3) + n1n2(n3 − 1)σ(4) (72)

In this, f1, f2, f3, and f4 can be regarded as variance inflation factors or design effects, as will be

shown soon.

Using the generalized least squares estimators, sample distributions of β̂ can be characterized

as β̂ ∼ N((X̃′Σ̃−1X̃)−1X̃′Σ̃−1Y, (X̃′Σ̃−1X̃)−1). Then, se(δ̂) is given by the square root of the (2, 2)

element of

(X̃′Σ̃−1X̃)−1 = (X̃′[IK ⊗ Σ−1]X̃)−1. (73)

Let x1, x2, x3, and x4 be

x1 = (1′Pn1 , 0′(1−P)n1 )′, x2 = (1′Pn2 , 0′(1−P)n2 )′, x3 = (1′Pn3 , 0′(1−P)n3 )′, x4 = (1′Pn4 , 0′(1−P)n4 )′, (74)
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respectively. Now, X can be expressed as

X =



1n2 n3 n4 ⊗ x1 (RBD with level-one randomization)

1n3 n4 ⊗ x2 ⊗ 1n1 (RBD with level-two randomization)

1n4 ⊗ x3 ⊗ 1n1 n2 (RBD with level-three randomization)

x4 ⊗ 1n1 n2 n3 , (HD)

(75)

for the respective randomized trials. Then, se(δ̂) can be calculated as

se(δ̂) =



se(δ̂1) = σ
√

1
NP(1−P)(σ(1)−σ(2)) = σ

√
f1

NP(1−P) = σ
√

ρ1
NP(1−P) ,

se(δ̂2) = σ
√

1
NP(1−P)[σ(1)+(n1−1)σ(2)−n1σ(3)] = σ

√
f2

NP(1−P) = σ
√

(n1ρ2+ρ1)
NP(1−P) ,

se(δ̂3) = σ
√

1
NP(1−P)[σ(1)+(n1−1)σ(2)+n1(n2−1)σ(3)−n1n2σ(4)] = σ

√
f3

NP(1−P) = σ
√

(n1n2ρ3+n1ρ2+ρ1)
NP(1−P) ,

se(δ̂4) = σ
√

1
NP(1−P)[σ(1)+(n1−1)σ(2)+n1(n2−1)σ(3)+n1n2(n3−1)σ(4)] = σ

√
f4

NP(1−P) = σ
√

(n1n2n3ρ4+n1n2ρ3+n1ρ2+ρ1)
NP(1−P) ,

(76)

for the respective randomized trials, leading to the same results as shown in (6). In addition, the

relation E(β̂) = β can be easily derived, since

E(β̂) = E((X̃′Σ̃−1X̃)−1X̃′Σ̃−1Y) = (X̃′Σ̃−1 X̃)−1X̃′Σ̃−1E(Y) = (X̃′Σ̃−1X̃)−1X̃′Σ̃−1(X̃β) = β. (77)

In our case, this result indicates the relation E(δ̂) = δ.

When heterogeneity of the experimental effect (random slopes) is assumed at each level (i.e.,

replacing δ with δ jkl, δkl, or δl; see footnote 4 in the main manuscript), substituting Σ̃s = Σ̃ + Σs into
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Σ̃ of equation (73) can provide the standard error of the experimental effect estimate (se(δ̂)). Here,

Σs = X0 ◦ (In4 ⊗ Σ0), (78)

Σ0 = σ
2[ρ4ω41n1 n2 n3 1′n1 n2 n3 + In3 ⊗ (ρ3ω31n1 n2 1′n1 n2 ) + In2 n3 ⊗ (ρ2ω21n1 1′n1 )], (79)

and

X0 =



In2 n3 n4 ⊗ (x1x′1) (RBD with level-one randomization)

In3 n4 ⊗ (x2 ⊗ 1n1 ) ⊗ (x2 ⊗ 1n1 )′ (RBD with level-two randomization)

In4 ⊗ (x3 ⊗ 1n1 n2 ) ⊗ (x3 ⊗ 1n1 n2 )′ (RBD with level-three randomization)

(x4 ⊗ 1n1 n2 n3 ) ⊗ (x4 ⊗ 1n1 n2 n3 )′, (HD)

(80)

Specifically, se(δ̂) is given by the square root of the (2, 2) element of

(X̃′Σ̃−1
s X̃)−1, (81)

leading to the same results as shown in equation (7). Note that σ2
sm = σ

2
mωm (m = 2, 3, 4) indicates

random slope variances.

Likewise, when covariates are included to reduce the magnitudes of residual variances at each

level, using conditional variances after including covariates (i.e., σ∗2m and σ∗2sm) rather than uncondi-

tional variances (i.e., σ2
m and σ2

sm) in equation (79) can provide a standard error of the experimental

effect estimate that is equivalent to equation (8).
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9 Appendix B: Standard error of experimental effect δ̂ when the

number of levels is two or three

As a special case of the results shown in (8), standard errors of the experimental effect δ̂ (i.e.,

se(δ̂)) when the number of levels is three can be expressed as

se(δ̂) =



se(δ̂1) = σ
√

P(1−P)n1n2ρ3ω3(1−R2
s3)+P(1−P)n1ρ2ω2(1−R2

s2)+ρ1(1−R2
1)

NP(1−P)

se(δ̂2) = σ
√

P(1−P)n1n2ρ3ω3(1−R2
s3)+n1ρ2(1−R2

2)+ρ1(1−R2
1)

NP(1−P)

se(δ̂3) = σ
√

n1n2ρ3(1−R2
3)+n1ρ2(1−R2

2)+ρ1(1−R2
1)

NP(1−P)

(82)

where N = n1n2n3, ρm = σ
2
m/(σ

2
1 + σ

2
2 + σ

2
3) (m = 1, 2, 3) and σ2 = σ2

1 + σ
2
2 + σ

2
3. The values of d f

differ according to the levels of randomization: d f = n3 − g3 − 1 for one- and level-two RBD, and

d f = n3 − g3 − 2 for HD, where g3 denotes the number of covariates at level three. When the desired

width of the confidence interval is specified as L, the relation 2t1−α/2,d f se(δ̂) ≤ L can be re-expressed

for each level unit in level-one RBD as

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

P(1 − P)[L2n2n3 − 4(1 − R2
s3)n2ρ3ω3t2

1−α/2,d f − 4(1 − R2
s2)ρ2ω2t2

1−α/2,d f ]
, (83)

n2 >
4σ2[P(1 − P)(1 − R2

s2)n1ρ2ω2 + (1 − R2
1)ρ1]t2

1−α/2,d f

P(1 − P)n1[L2n3 − 4(1 − R2
s3)ρ3ω3t2

1−α/2,d f ]
, (84)

n3 >
4σ2[P(1 − P)(1 − R2

s3)n1n2ρ3ω3 + P(1 − P)(1 − R2
s2)n1ρ2ω2 + (1 − R2

1)ρ1]t2
1−α/2,d f

P(1 − P)n1n2L2 . (85)



Sample size determination for hierarchical data 49

Similar results

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

L2P(1 − P)n2n3 − 4P(1 − P)(1 − R2
s3)n2ρ3ω3t2

1−α/2,d f − 4(1 − R2
2)ρ2t2

1−α/2,d f

, (86)

n2 >
4σ2[(1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

P(1 − P)n1[L2n3 − 4(1 − R2
s3)ρ3ω3t2

1−α/2,d f ]
, (87)

n3 >
4σ2[P(1 − P)(1 − R2

s3)n1n2ρ3ω3 + (1 − R2
2)n1ρ2 + (1 − R2

1)ρ1]t2
1−α/2,d f

P(1 − P)n1n2L2 . (88)

for level-two RBD, and

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

L2P(1 − P)n2n3 − 4(1 − R2
3)n2ρ3t2

1−α/2,d f − 4(1 − R2
2)ρ2t2

1−α/2,d f

, (89)

n2 >
4σ2[(1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

n1[L2P(1 − P)n3 − 4(1 − R2
3)ρ3t2

1−α/2,d f ]
, (90)

n3 >
4σ2[(1 − R2

3)n1n2ρ3 + (1 − R2
2)n1ρ2 + (1 − R2

1)ρ1]t2
1−α/2,d f

P(1 − P)n1n2L2 . (91)

for HD can also be derived. If the number of levels is two, se(δ̂)) can be expressed as

se(δ̂) =


se(δ̂1) = σ

√
P(1−P)n1ρ2ω2(1−R2

s2)+ρ1(1−R2
1)

NP(1−P)

se(δ̂2) = σ
√

n1ρ2(1−R2
2)+ρ1(1−R2

1)
NP(1−P)

(92)

where N = n1n2, ρm = σ
2
m/(σ

2
1+σ

2
2) (m = 1, 2), and σ2 = σ2

1+σ
2
2. The values of d f differ according

to the levels of randomization: d f = n2 − g2 − 1 for level-one RBD and d f = n2 − g2 − 2 for HD,

where g2 denotes the number of covariates in level two. The relation 2t1−α/2,d f se(δ̂) ≤ L can be

re-expressed for each level unit in level-one RBD as

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

P(1 − P)[L2n2 − 4(1 − R2
s2)ρ2ω2t2

1−α/2,d f ]
, (93)

n2 >
4σ2[P(1 − P)(1 − R2

s2)n1ρ2ω2 + (1 − R2
1)ρ1]t2

1−α/2,d f

P(1 − P)n1L2 . (94)
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Similar results

n1 >
4σ2(1 − R2

1)ρ1t2
1−α/2,d f

L2P(1 − P)n2 − 4(1 − R2
2)ρ2t2

1−α/2,d f

, (95)

n2 >
4σ2[(1 − R2

2)n1ρ2 + (1 − R2
1)ρ1]t2

1−α/2,d f

P(1 − P)n1L2 . (96)

can also be given for HD.



Table 1. Example of an assignment indicator variable for each design for four-level data 
( 24321 ==== nnnn ). 
  

 

 
 

level-one  
RBD 

level-two  
RBD 

level-three  
RBD 

HD 

     
1111x  1 1 1 1 
2111x  0 1 1 1 
1211x  1 0 1 1 
2211x  0 0 1 1 
1121x  1 1 0 1 
2121x  0 1 0 1 
1221x  1 0 0 1 
2221x  0 0 0 1 
1112x  1 1 1 0 
2112x  0 1 1 0 
1212x  1 0 1 0 
2212x  0 0 1 0 
1122x  1 1 0 0 
2122x  0 1 0 0 
1222x  1 0 0 0 
2222x  0 0 0 0 

*RBD…randomized blocked design, HD…hierarchical design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Minimum required values of level-𝑴𝑴 units (𝒏𝒏𝑴𝑴, 𝑴𝑴= total number of levels = 2,3,4) under a 
randomized blocked design when the total amount of data from lower units becomes infinite (two-sided 
significance level is 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎).  

𝑹𝑹𝒔𝒔𝒔𝒔𝟐𝟐  𝝆𝝆𝑴𝑴 𝝎𝝎𝑴𝑴 
Desired width of confidence interval L for standardized experimental effects (Δ) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 0.1 0.1 4 1 1 1 1 1 1 1 1 1 
0.1 0.3 0.1 11 3 2 1 1 1 1 1 1 1 
0.1 0.5 0.1 19 5 3 2 1 1 1 1 1 1 
0.1 0.7 0.1 26 7 3 2 2 1 1 1 1 1 
0.1 0.9 0.1 33 9 4 3 2 1 1 1 1 1 
0.1 0.1 0.5 19 5 3 2 1 1 1 1 1 1 
0.1 0.3 0.5 55 14 7 4 3 2 2 1 1 1 
0.1 0.5 0.5 91 23 11 6 4 3 2 2 2 1 
0.1 0.7 0.5 127 32 15 8 6 4 3 2 2 2 
0.1 0.9 0.5 163 41 19 11 7 5 4 3 3 2 
0.1 0.1 1 37 10 5 3 2 2 1 1 1 1 
0.1 0.3 1 109 28 13 7 5 4 3 2 2 2 
0.1 0.5 1 181 46 21 12 8 6 4 3 3 2 
0.1 0.7 1 253 64 29 16 11 8 6 4 4 3 
0.1 0.9 1 325 82 37 21 13 10 7 6 5 4 
0.3 0.1 0.1 3 1 1 1 1 1 1 1 1 1 
0.3 0.3 0.1 9 3 1 1 1 1 1 1 1 1 
0.3 0.5 0.1 15 4 2 1 1 1 1 1 1 1 
0.3 0.7 0.1 20 5 3 2 1 1 1 1 1 1 
0.3 0.9 0.1 26 7 3 2 2 1 1 1 1 1 
0.3 0.1 0.5 15 4 2 1 1 1 1 1 1 1 
0.3 0.3 0.5 43 11 5 3 2 2 1 1 1 1 
0.3 0.5 0.5 71 18 8 5 3 2 2 2 1 1 
0.3 0.7 0.5 99 25 11 7 4 3 3 2 2 1 
0.3 0.9 0.5 127 32 15 8 6 4 3 2 2 2 
0.3 0.1 1 29 8 4 2 2 1 1 1 1 1 
0.3 0.3 1 85 22 10 6 4 3 2 2 2 1 
0.3 0.5 1 141 36 16 9 6 4 3 3 2 2 
0.3 0.7 1 197 50 22 13 8 6 5 4 3 2 
0.3 0.9 1 253 64 29 16 11 8 6 4 4 3 
0.5 0.1 0.1 3 1 1 1 1 1 1 1 1 1 
0.5 0.3 0.1 7 2 1 1 1 1 1 1 1 1 
0.5 0.5 0.1 11 3 2 1 1 1 1 1 1 1 
0.5 0.7 0.1 15 4 2 1 1 1 1 1 1 1 
0.5 0.9 0.1 19 5 3 2 1 1 1 1 1 1 
0.5 0.1 0.5 11 3 2 1 1 1 1 1 1 1 
0.5 0.3 0.5 31 8 4 2 2 1 1 1 1 1 
0.5 0.5 0.5 51 13 6 4 3 2 2 1 1 1 
0.5 0.7 0.5 71 18 8 5 3 2 2 2 1 1 
0.5 0.9 0.5 91 23 11 6 4 3 2 2 2 1 
0.5 0.1 1 21 6 3 2 1 1 1 1 1 1 
0.5 0.3 1 61 16 7 4 3 2 2 1 1 1 
0.5 0.5 1 101 26 12 7 5 3 3 2 2 2 
0.5 0.7 1 141 36 16 9 6 4 3 3 2 2 
0.5 0.9 1 181 46 21 12 8 6 4 3 3 2 
*𝑹𝑹𝒔𝒔𝒔𝒔𝟐𝟐 …coefficient of determination for slopes at level-𝑴𝑴, 𝝆𝝆𝑴𝑴…(proportion of) residual variance for intercepts at 
level-𝑴𝑴, 𝝎𝝎𝑴𝑴…ratio of slope variances to intercept variances at level-𝑴𝑴. 
 
 
 



Table 3. Minimum required values of level-𝑴𝑴 units (𝒏𝒏𝑴𝑴, 𝑴𝑴= total number of levels =2,3,4) under a 
hierarchical design when the total amount of data from lower units becomes infinite (two-sided significance 
level is 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎). 

𝑹𝑹𝑴𝑴𝟐𝟐  𝝆𝝆𝑴𝑴 𝑷𝑷 
Desired width of confidence interval L for standardized experimental effects (Δ) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 0.1 0.5 145 37 17 10 6 5 3 3 2 2 
0.1 0.3 0.5 433 109 49 28 18 13 9 7 6 5 
0.1 0.5 0.5 721 181 81 46 29 21 15 12 9 8 
0.1 0.7 0.5 1009 253 113 64 41 29 21 16 13 11 
0.1 0.9 0.5 1297 325 145 82 52 37 27 21 17 13 
0.1 0.1 0.7 172 43 20 11 7 5 4 3 3 2 
0.1 0.3 0.7 515 129 58 33 21 15 11 9 7 6 
0.1 0.5 0.7 858 215 96 54 35 24 18 14 11 9 
0.1 0.7 0.7 1201 301 134 76 49 34 25 19 15 13 
0.1 0.9 0.7 1543 386 172 97 62 43 32 25 20 16 
0.1 0.1 0.9 401 101 45 26 17 12 9 7 5 5 
0.1 0.3 0.9 1201 301 134 76 49 34 25 19 15 13 
0.1 0.5 0.9 2001 501 223 126 81 56 41 32 25 21 
0.1 0.7 0.9 2801 701 312 176 113 78 58 44 35 29 
0.1 0.9 0.9 3601 901 401 226 145 101 74 57 45 37 
0.3 0.1 0.5 113 29 13 8 5 4 3 2 2 2 
0.3 0.3 0.5 337 85 38 22 14 10 7 6 5 4 
0.3 0.5 0.5 561 141 63 36 23 16 12 9 7 6 
0.3 0.7 0.5 785 197 88 50 32 22 17 13 10 8 
0.3 0.9 0.5 1009 253 113 64 41 29 21 16 13 11 
0.3 0.1 0.7 134 34 15 9 6 4 3 3 2 2 
0.3 0.3 0.7 401 101 45 26 17 12 9 7 5 5 
0.3 0.5 0.7 667 167 75 42 27 19 14 11 9 7 
0.3 0.7 0.7 934 234 104 59 38 26 20 15 12 10 
0.3 0.9 0.7 1201 301 134 76 49 34 25 19 15 13 
0.3 0.1 0.9 312 78 35 20 13 9 7 5 4 4 
0.3 0.3 0.9 934 234 104 59 38 26 20 15 12 10 
0.3 0.5 0.9 1556 389 173 98 63 44 32 25 20 16 
0.3 0.7 0.9 2178 545 242 137 88 61 45 35 27 22 
0.3 0.9 0.9 2801 701 312 176 113 78 58 44 35 29 
0.5 0.1 0.5 81 21 9 6 4 3 2 2 1 1 
0.5 0.3 0.5 241 61 27 16 10 7 5 4 3 3 
0.5 0.5 0.5 401 101 45 26 17 12 9 7 5 5 
0.5 0.7 0.5 561 141 63 36 23 16 12 9 7 6 
0.5 0.9 0.5 721 181 81 46 29 21 15 12 9 8 
0.5 0.1 0.7 96 24 11 6 4 3 2 2 2 1 
0.5 0.3 0.7 286 72 32 18 12 8 6 5 4 3 
0.5 0.5 0.7 477 120 53 30 20 14 10 8 6 5 
0.5 0.7 0.7 667 167 75 42 27 19 14 11 9 7 
0.5 0.9 0.7 858 215 96 54 35 24 18 14 11 9 
0.5 0.1 0.9 223 56 25 14 9 7 5 4 3 3 
0.5 0.3 0.9 667 167 75 42 27 19 14 11 9 7 
0.5 0.5 0.9 1112 278 124 70 45 31 23 18 14 12 
0.5 0.7 0.9 1556 389 173 98 63 44 32 25 20 16 
0.5 0.9 0.9 2001 501 223 126 81 56 41 32 25 21 
*𝑹𝑹𝑴𝑴𝟐𝟐 …coefficient of determination for intercepts at level-𝑴𝑴, 𝝆𝝆𝑴𝑴…(proportion of) residual variance for intercepts at 
level-𝑴𝑴, 𝑷𝑷…proportion of experimental group size. 
 
 
 
 



Table 4. Summary of results for different experimental designs 
 RBD 

HD 
  level-one RBD level-two RBD level-three RBD 

Assignment indicator variable 𝑿𝑿𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝑿𝑿𝒋𝒋𝒋𝒋𝒋𝒋 𝑿𝑿𝒌𝒌𝒌𝒌 𝑿𝑿𝒍𝒍  
Sample size determination formulas Equations 11–14 Equations 15–18 Equations 19–22 Equations 23–26 

Dependence of heterogeneity of experimental 

effect (random slope variances: ω) in formulas 
Yes No 

Degree of freedom in testing 𝑯𝑯𝟎𝟎 :𝜹𝜹 = 𝟎𝟎 𝒏𝒏𝟒𝟒 − 𝒈𝒈𝟒𝟒 − 𝟏𝟏 𝒏𝒏𝟒𝟒 − 𝒈𝒈𝟒𝟒 − 𝟐𝟐 

Asymptotic standard errors 

(Equations 51–54) 
�
𝝈𝝈(𝟏𝟏 − 𝑹𝑹𝒔𝒔𝟒𝟒𝟐𝟐 )𝝆𝝆𝟒𝟒 𝝎𝝎𝟒𝟒

𝒏𝒏𝟒𝟒
 �

𝝈𝝈(𝟏𝟏 − 𝑹𝑹𝟒𝟒𝟐𝟐)𝝆𝝆𝟒𝟒
𝑷𝑷(𝟏𝟏 − 𝑷𝑷)𝒏𝒏𝟒𝟒

 

Minimum required numbers in the highest 

units 𝒏𝒏𝟒𝟒  when the total amount of data from 

lower units (𝒏𝒏𝟏𝟏 𝒏𝒏𝟐𝟐 𝒏𝒏𝟑𝟑 ) becomes infinite 

𝒏𝒏𝟒𝟒 ≥
𝟒𝟒𝝈𝝈𝟐𝟐(𝟏𝟏 − 𝑹𝑹𝒔𝒔𝒔𝒔𝟐𝟐 )𝝆𝝆𝟒𝟒 𝝎𝝎𝟒𝟒

𝑳𝑳𝟐𝟐
 

(Equation 55) 

𝒏𝒏𝟒𝟒 ≥ 𝟒𝟒𝝈𝝈𝟐𝟐(𝟏𝟏−𝑹𝑹𝟒𝟒
𝟐𝟐)𝝆𝝆𝟒𝟒

𝑳𝑳𝟐𝟐𝑷𝑷(𝟏𝟏−𝑷𝑷)
 

(Equation 56) 

Standard errors of experimental effect 

estimates (when 𝝎𝝎𝟐𝟐 = 𝝎𝝎𝟑𝟑 = 𝝎𝝎𝟒𝟒 =0) 
𝒔𝒔𝒔𝒔(𝜹𝜹�𝟏𝟏 )      ≤       𝒔𝒔𝒔𝒔(𝜹𝜹�𝟐𝟐 )      ≤       𝒔𝒔𝒔𝒔(𝜹𝜹�𝟑𝟑 )      ≤       𝒔𝒔𝒔𝒔(𝜹𝜹�𝟒𝟒 ) 

Relative influences of the proportion of units 

in the experimental group (𝑷𝑷) on standard 

errors (equations 39–40) 

 

*RBD…randomized blocked design, HD…hierarchical design, 𝒏𝒏𝟒𝟒 …unit size at the fourth level, 
𝒈𝒈𝟒𝟒 … 𝐭𝐭𝐭𝐭𝐭𝐭 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐨𝐨𝐨𝐨 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥, 𝑹𝑹𝒔𝒔𝒔𝒔𝟐𝟐 …coefficient of determination for slopes at the 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟th 
level, 𝑹𝑹𝟒𝟒𝟐𝟐…coefficient of determination for intercepts at the 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟th level, 𝝆𝝆𝟒𝟒…(proportion of) residual variance for 
intercepts at the 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 th level, 𝝎𝝎𝟒𝟒 …ratio of slope variances to intercept variances at the 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 th level, 
𝑷𝑷…proportion of experimental group size, 𝑳𝑳…desired width of confidence intervals. 
 

large small 
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level-1 randomization in four-level design (rho1+rho2+rho3+rho4=1) 
 
#Equation 11 in main manuscript 
L4random1n1<-function(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n4-g4-1)^2)/(P*(1-P)*(L^2*n2*n3*n4-4*(1-
Rs4sq)*n2*n3*rho4*w4*qt(1-alpha/2,n4-g4-1)^2-4*(1-Rs3sq)*n2*rho3*w3*qt(1-alpha/2,n4-g4-1)^2-4*(1-
Rs2sq)*rho2*w2*qt(1-alpha/2,n4-g4-1)^2)))+1 
return(n1) 
} 
L4random1n1(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma) 
 
#Equation 12 in main manuscript 
L4random1n2<-function(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma){ 
n2<-floor((4*sigma^2*(P*(1-P)*(1-Rs2sq)*n1*rho2*w2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-1)^2)/(P*(1-
P)*n1*(L^2*n3*n4-4*(1-Rs4sq)*n3*rho4*w4*qt(1-alpha/2,n4-g4-1)^2-4*(1-Rs3sq)*rho3*w3*qt(1-alpha/2,n4-g4-
1)^2)))+1 
return(n2) 
} 
L4random1n2(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma) 
 
#Equation 13 in main manuscript 
L4random1n3<-function(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma){ 
n3<-floor((4*sigma^2*(P*(1-P)*(1-Rs3sq)*n1*n2*rho3*w3+P*(1-P)*(1-Rs2sq)*n1*rho2*w2+(1-R1sq)*rho1)*qt(1-
alpha/2,n4-g4-1)^2)/(P*(1-P)*n1*n2*(L^2*n4-4*(1-Rs4sq)*rho4*w4*qt(1-alpha/2,n4-g4-1)^2)))+1 
return(n3) 
} 
L4random1n3(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma) 
 
#Equation 14 in main manuscript 
L4random1n4<-function(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma){ 
n4<-g4+1+1; STOP<-0 
while(STOP==0){ 
Diff<-n4-(4*sigma^2*(P*(1-P)*(1-Rs4sq)*n1*n2*n3*rho4*w4+P*(1-P)*(1-Rs3sq)*n1*n2*rho3*w3+P*(1-P)*(1-
Rs2sq)*n1*rho2*w2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-1)^2)/(L^2*P*(1-P)*n1*n2*n3) 
if(Diff>0){ 
STOP<-1; n4<-n4 
}else{ 
STOP<-0; n4<-n4+1 
};} 
return(n4) 
} 
L4random1n4(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,Rs2sq,Rs3sq,Rs4sq,w2,w3,w4,P,sigma) 
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level-2 randomization in four-level design (rho1+rho2+rho3+rho4=1) 
 
#Equation 15 in main manuscript 
L4random2n1<-function(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n4-g4-1)^2)/(L^2*P*(1-P)*n2*n3*n4-4*P*(1-P)*(1-
Rs4sq)*n2*n3*rho4*w4*qt(1-alpha/2,n4-g4-1)^2-4*P*(1-P)*(1-Rs3sq)*n2*rho3*w3*qt(1-alpha/2,n4-g4-1)^2-4*(1-
R2sq)*rho2*qt(1-alpha/2,n4-g4-1)^2))+1 
return(n1) 
} 
L4random2n1(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma) 
 
#Equation 16 in main manuscript 
L4random2n2<-function(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma){ 
n2<-floor((4*sigma^2*((1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-1)^2)/(P*(1-P)*n1*(L^2*n3*n4-4*(1-
Rs4sq)*n3*rho4*w4*qt(1-alpha/2,n4-g4-1)^2-4*(1-Rs3sq)*rho3*w3*qt(1-alpha/2,n4-g4-1)^2)))+1 
return(n2) 
} 
L4random2n2(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma) 
 
#Equation 17 in main manuscript 
L4random2n3<-function(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma){ 
n3<-floor((4*sigma^2*(P*(1-P)*(1-Rs3sq)*n1*n2*rho3*w3+(1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-
1)^2)/(P*(1-P)*n1*n2*(L^2*n4-4*(1-Rs4sq)*rho4*w4*qt(1-alpha/2,n4-g4-1)^2)))+1 
return(n3) 
} 
L4random2n3(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma) 
 
#Equation 18 in main manuscript 
L4random2n4<-function(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma){ 
n4<-g4+1+1; STOP<-0 
while(STOP==0){ 
Diff<-n4-(4*sigma^2*(P*(1-P)*(1-Rs4sq)*n1*n2*n3*rho4*w4+P*(1-P)*(1-Rs3sq)*n1*n2*rho3*w3+(1-
R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-1)^2)/(L^2*P*(1-P)*n1*n2*n3) 
if(Diff>0){ 
STOP<-1; n4<-n4 
}else{ 
STOP<-0; n4<-n4+1 
};} 
return(n4) 
} 
L4random2n4(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,R2sq,Rs3sq,Rs4sq,w3,w4,P,sigma) 
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level-3 randomization in four-level design (rho1+rho2+rho3+rho4=1) 
 
#Equation 19 in main manuscript 
L4random3n1<-function(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n4-g4-1)^2)/(L^2*P*(1-P)*n2*n3*n4-4*P*(1-P)*(1-
Rs4sq)*n2*n3*rho4*w4*qt(1-alpha/2,n4-g4-1)^2-4*(1-R3sq)*n2*rho3*qt(1-alpha/2,n4-g4-1)^2-4*(1-
R2sq)*rho2*qt(1-alpha/2,n4-g4-1)^2))+1 
return(n1) 
} 
L4random3n1(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma) 
 
#Equation 20 in main manuscript 
L4random3n2<-function(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma){ 
n2<-floor((4*sigma^2*((1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-1)^2)/(n1*(L^2*P*(1-P)*n3*n4-
4*P*(1-P)*(1-Rs4sq)*n3*rho4*w4*qt(1-alpha/2,n4-g4-1)^2-4*(1-R3sq)*rho3*qt(1-alpha/2,n4-g4-1)^2)))+1 
return(n2) 
} 
L4random3n2(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma) 
 
#Equation 21 in main manuscript 
L4random3n3<-function(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma){ 
n3<-floor((4*sigma^2*((1-R3sq)*n1*n2*rho3+(1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-1)^2)/(P*(1-
P)*n1*n2*(L^2*n4-4*(1-Rs4sq)*rho4*w4*qt(1-alpha/2,n4-g4-1)^2)))+1 
return(n3) 
} 
L4random3n3(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma) 
 
#Equation 22 in main manuscript 
L4random3n4<-function(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma){ 
n4<-g4+1+1; STOP<-0 
while(STOP==0){ 
Diff<-n4-(4*sigma^2*(P*(1-P)*(1-Rs4sq)*n1*n2*n3*rho4*w4+(1-R3sq)*n1*n2*rho3+(1-R2sq)*n1*rho2+(1-
R1sq)*rho1)*qt(1-alpha/2,n4-g4-1)^2)/(L^2*P*(1-P)*n1*n2*n3) 
if(Diff>0){ 
STOP<-1; n4<-n4 
}else{ 
STOP<-0; n4<-n4+1 
};} 
return(n4) 
} 
L4random3n4(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,Rs4sq,w4,P,sigma) 
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level-4 randomization in four-level design (rho1+rho2+rho3+rho4=1) 
 
#Equation 23 in main manuscript 
L4random4n1<-function(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n4-g4-2)^2)/(L^2*P*(1-P)*n2*n3*n4-4*(1-
R4sq)*n2*n3*rho4*qt(1-alpha/2,n4-g4-2)^2-4*(1-R3sq)*n2*rho3*qt(1-alpha/2,n4-g4-2)^2-4*(1-R2sq)*rho2*qt(1-
alpha/2,n4-g4-2)^2))+1 
return(n1) 
} 
L4random4n1(L,alpha,g4,n2,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq, P,sigma) 
 
#Equation 24 in main manuscript 
L4random4n2<-function(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq,P,sigma){ 
n2<-floor((4*sigma^2*((1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-2)^2)/(n1*(L^2*P*(1-P)*n3*n4-4*(1-
R4sq)*n3*rho4*qt(1-alpha/2,n4-g4-2)^2-4*(1-R3sq)*rho3*qt(1-alpha/2,n4-g4-2)^2)))+1 
return(n2) 
} 
L4random4n2(L,alpha,g4,n1,n3,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq, P,sigma) 
 
#Equation 25 in main manuscript 
L4random4n3<-function(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq,P,sigma){ 
n3<-floor((4*sigma^2*((1-R3sq)*n1*n2*rho3+(1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n4-g4-2) 
^2)/(n1*n2*(L^2*P*(1-P)*n4-4*(1-R4sq)*rho4*qt(1-alpha/2,n4-g4-2)^2)))+1 
return(n3) 
} 
L4random4n3(L,alpha,g4,n1,n2,n4,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq ,P,sigma) 
 
#Equation 26 in main manuscript 
L4random4n4<-function(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq,P,sigma){ 
n4<-g4+2+1; STOP<-0 
while(STOP==0){ 
Diff<-n4-((4*sigma^2*((1-R4sq)*n1*n2*n3*rho4+(1-R3sq)*n1*n2*rho3+(1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-
alpha/2,n4-g4-2)^2)/(L^2*P*(1-P)*n1*n2*n3)) 
if(Diff>0){ 
STOP<-1; n4<-n4 
}else{ 
STOP<-0; n4<-n4+1 
};} 
return(n4) 
} 
L4random4n4(L,alpha,g4,n1,n2,n3,rho1,rho2,rho3,rho4,R1sq,R2sq,R3sq,R4sq ,P,sigma) 
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level-1 randomization in three-level design (rho1+rho2+rho3=1) 
 
 
L3random1n1<-function(L,alpha,g3,n2,n3,rho1,rho2,rho3,R1sq,Rs2sq,Rs3sq,w2,w3,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n3-g3-1)^2)/(P*(1-P)*(L^2*n2*n3-4*(1-
Rs3sq)*n2*rho3*w3*qt(1-alpha/2,n3-g3-1)^2-4*(1-Rs2sq)*rho2*w2*qt(1-alpha/2,n3-g3-1)^2)))+1 
return(n1) 
} 
L3random1n1(L,alpha,g3,n2,n3,rho1,rho2,rho3,R1sq,Rs2sq,Rs3sq,w2,w3,P,sigma) 
 
 
L3random1n2<-function(L,alpha,g3,n1,n3,rho1,rho2,rho3,R1sq,Rs2sq,Rs3sq,w2,w3,P,sigma){ 
n2<-floor((4*sigma^2*(P*(1-P)*(1-Rs2sq)*n1*rho2*w2+(1-R1sq)*rho1)*qt(1-alpha/2,n3-g3-1)^2)/(P*(1-
P)*n1*(L^2*n3-4*(1-Rs3sq)*rho3*w3*qt(1-alpha/2,n3-g3-1)^2)))+1 
return(n2) 
} 
L3random1n2(L,alpha,g3,n1,n3,rho1,rho2,rho3,R1sq,Rs2sq,Rs3sq,w2,w3,P,sigma) 
 
 
L3random1n3<-function(L,alpha,g3,n1,n2,rho1,rho2,rho3,R1sq,Rs2sq,Rs3sq,w2,w3,P,sigma){ 
n3<-g3+1+1; STOP<-0 
while(STOP==0){ 
Diff<-n3-(4*sigma^2*(P*(1-P)*(1-Rs3sq)*n1*n2*rho3*w3+P*(1-P)*(1-Rs2sq)*n1*rho2*w2+(1-R1sq)*rho1)*qt(1-
alpha/2,n3-g3-1)^2)/(P*(1-P)*n1*n2*L^2) 
if(Diff>0){ 
STOP<-1; n3<-n3 
}else{ 
STOP<-0; n3<-n3+1 
};} 
return(n3) 
} 
L3random1n3(L,alpha,g3,n1,n2,rho1,rho2,rho3,R1sq,Rs2sq,Rs3sq,w2,w3,P,sigma) 
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level-2 randomization in three-level design (rho1+rho2+rho3=1) 
 
 
L3random2n1<-function(L,alpha,g3,n2,n3,rho1,rho2,rho3,R1sq,R2sq,Rs3sq,w3,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n3-g3-1)^2)/(L^2*P*(1-P)*n2*n3-4*P*(1-P)*(1-
Rs3sq)*n2*rho3*w3*qt(1-alpha/2,n3-g3-1)^2-4*(1-R2sq)*rho2*qt(1-alpha/2,n3-g3-1)^2))+1 
return(n1) 
} 
L3random2n1(L,alpha,g3,n2,n3,rho1,rho2,rho3,R1sq,R2sq,Rs3sq,w3,P,sigma) 
 
 
L3random2n2<-function(L,alpha,g3,n1,n3,rho1,rho2,rho3,R1sq,R2sq,Rs3sq,w3,P,sigma) { 
n2<-floor((4*sigma^2*((1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n3-g3-1)^2)/(P*(1-P)*n1*(L^2*n3-4*(1-
Rs3sq)*rho3*w3*qt(1-alpha/2,n3-g3-1)^2)))+1 
return(n2) 
} 
L3random2n2(L,alpha,g3,n1,n3,rho1,rho2,rho3,R1sq,R2sq,Rs3sq,w3,P,sigma) 
 
 
L3random2n3<-function(L,alpha,g3,n1,n2,rho1,rho2,rho3,R1sq,R2sq,Rs3sq,w3,P,sigma){ 
n3<-g3+1+1; STOP<-0 
while(STOP==0){ 
Diff<-n3-(4*sigma^2*(P*(1-P)*(1-Rs3sq)*n1*n2*rho3*w3+(1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n3-g3-
1)^2)/(P*(1-P)*n1*n2*L^2) 
if(Diff>0){ 
STOP<-1; n3<-n3 
}else{ 
STOP<-0; n3<-n3+1 
};} 
return(n3) 
} 
L3random2n3(L,alpha,g3,n1,n2,rho1,rho2,rho3,R1sq,R2sq,Rs3sq,w3,P,sigma) 
 
 
 
 
 
 
 
 
 
 
 
 



8 
 

 
level-3 randomization in three-level design (rho1+rho2+rho3=1) 
 
 
L3random3n1<-function(L,alpha,g3,n2,n3,rho1,rho2,rho3,R1sq,R2sq,R3sq,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n3-g3-2)^2)/(L^2*P*(1-P)*n2*n3-4*(1-R3sq)*n2*rho3*qt(1-
alpha/2,n3-g3-2)^2-4*(1-R2sq)*rho2*qt(1-alpha/2,n3-g3-2)^2))+1 
return(n1) 
} 
L3random3n1(L,alpha,g3,n2,n3,rho1,rho2,rho3,R1sq,R2sq,R3sq,P,sigma) 
 
 
L3random3n2<-function(L,alpha,g3,n1,n3,rho1,rho2,rho3,R1sq,R2sq,R3sq,P,sigma){ 
n2<-floor((4*sigma^2*((1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n3-g3-2)^2)/(n1*(L^2*P*(1-P)*n3-4*(1-
R3sq)*rho3*qt(1-alpha/2,n3-g3-2)^2)))+1 
return(n2) 
} 
L3random3n2(L,alpha,g3,n1,n3,rho1,rho2,rho3,R1sq,R2sq,R3sq,P,sigma) 
 
 
L3random3n3<-function(L,alpha,g3,n1,n2,rho1,rho2,rho3,R1sq,R2sq,R3sq,P,sigma){ 
N3<-g3+2+1; STOP<-0 
while(STOP==0){ 
Diff<-n3-(4*sigma^2*((1-R3sq)*n1*n2*rho3+(1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n3-g3-2)^2)/(P*(1-
P)*n1*n2*L^2) 
if(Diff>0){ 
STOP<-1; n3<-n3 
}else{ 
STOP<-0; n3<-n3+1 
};} 
return(n3) 
} 
L3random3n3(L,alpha,g3,n1,n2,rho1,rho2,rho3,R1sq,R2sq,R3sq,P,sigma) 
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level-1 randomization in two-level design (rho1+rho2=1) 
 
 
L2random1n1<-function(L,alpha,g2,n2,rho1,rho2,R1sq,Rs2sq,w2,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n2-g2-1)^2)/(P*(1-P)*(L^2*n2-4*(1-Rs2sq)*rho2*w2*qt(1-
alpha/2,n2-g2-1)^2)))+1 
return(n1) 
} 
L2random1n1(L,alpha,g2,n2,rho1,rho2,R1sq,Rs2sq,w2,P,sigma) 
 
 
L2random1n2<-function(L,alpha,g2,n1,rho1,rho2,R1sq,Rs2sq,w2,P,sigma){ 
N2<-g2+1+1; STOP<-0 
while(STOP==0){ 
Diff<-n2-(4*sigma^2*(P*(1-P)*(1-Rs2sq)*n1*rho2*w2+(1-R1sq)*rho1)*qt(1-alpha/2,n2-g2-1)^2)/(P*(1-P)*n1*L^2) 
if(Diff>0){ 
STOP<-1; n2<-n2 
}else{ 
STOP<-0; n2<-n2+1 
};} 
return(n2) 
} 
L2random1n2(L,alpha,g2,n1,rho1,rho2,R1sq,Rs2sq,w2,P,sigma) 
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level-2 randomization in two-level design (rho1+rho2=1) 
 
 
L2random2n1<-function(L,alpha,g2,n2,rho1,rho2,R1sq,R2sq,P,sigma){ 
n1<-floor((4*sigma^2*(1-R1sq)*rho1*qt(1-alpha/2,n2-g2-2)^2)/(L^2*P*(1-P)*n2-4*(1-R2sq)*rho2*qt(1-alpha/2,n2-
g2-2)^2))+1 
return(n1) 
} 
L2random2n1(L,alpha,g2,n2,rho1,rho2,R1sq,R2sq,P,sigma) 
 
 
L2random2n2<-function(L,alpha,g2,n1,rho1,rho2,R1sq,R2sq,P,sigma){ 
n3<-g2+2+1; STOP<-0 
while(STOP==0){ 
Diff<-n2-(4*sigma^2*((1-R2sq)*n1*rho2+(1-R1sq)*rho1)*qt(1-alpha/2,n2-g2-2)^2)/(P*(1-P)*n1*L^2) 
if(Diff>0){ 
STOP<-1; n2<-n2 
}else{ 
STOP<-0; n2<-n2+1 
};} 
return(n2) 
} 
L2random2n2(L,alpha,g2,n1,rho1,rho2,R1sq,R2sq,P,sigma) 
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