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A Two-Step Robust Estimation Approach for
Inferring Within-Person Relations in Longitudinal

Design: Tutorial and Simulations

Abstract

Psychological researchers have shown an interest in disaggregating within-person
variability from between-person differences. Especially for inferring reciprocal rela-
tions among variables at the within-person level, applications of the random-intercept
cross-lagged panel model (RI-CLPM) with stable trait factors has increased rapidly.
This paper provides a tutorial, simulation, and illustrative example of another recent
approach proposed by Usami (2023). This approach consists of a two-step procedure:
within-person variability scores (WPVS) for each person, which are disaggregated
from the stable traits of that person, are predicted using structural equation mod-
eling, and causal parameters are then estimated via a potential outcome approach,
such as by using structural nested mean models (SNMMs). This method assumes
a data-generating process similar to that in RI-CLPM, and has several advantages:
(i) the flexible inclusion of curvilinear and interaction effects for WPVS as latent
variables in treatment and outcome models, (ii) more accurate estimates of causal
parameters for reciprocal relations can be obtained under certain conditions owing to
them being doubly robust, even if unobserved time-varying confounders and model
misspecifications exist, (iii) no models for (the distributions of) observed time-varying
confounders are needed for estimation, and (iv) the risk of obtaining improper so-
lutions is reduced. After explaining the data-generating process and the analysis
procedure using the R package DTRreg for SNMMs, estimation performances are
compared with RI-CLPM through large-scale simulations. We show that the pro-
posed approach works well in many conditions if longitudinal data with T ≥ 4 are
available, and that the accuracy increases as T becomes larger. An analytic example
using data regarding sleep habits and mental health statuses from the Tokyo Teen
Cohort (TTC) study is also provided.

Keywords: within-person relation, longitudinal data, structural equation modeling, struc-
tural nested mean model, causal inference

1



1 INTRODUCTION

When analyzing relations among variables in data, psychological researchers differentiate

between within-group (unit-level) relations and between-group (group-level) relations, and

between within-person relations and between-person relations. Particularly in longitudinal

design, researchers have shown an interest in inferring within-person relations: how changes

in one variable influence another for the same person. Within-person relations may exhibit

statistically different (or even opposite) tendencies from between-person relations, and this

is one reason that statistical inference for disaggregating within- and between-person rela-

tions has long been a concern in psychology. On the other hand, estimands that are defined

at the within-person level have been less common in the causal inference literature (Lüdtke

& Robitzsch, 2021).

Multilevel modeling (Hoffman, 2014; Wang & Maxwell, 2015) and structural equation

modeling (SEM) (Hamaker, Kuiper, & Grasman, 2015) are two statistical methods that

have been popular for investigating within-person relations. The SEM approach might be

advantageous if researchers wish to (i) include common factors in measurement models

for multiple indicators, (ii) assume measurement errors for measurements with imperfect

reliability, (iii) treat multiple outcomes to evaluate reciprocal (or mutual) relations, or (iv)

use model fit indices to evaluate how the model implied mean and covariance structure can

reproduce the observed mean vector and covariance matrix. After the critique of applying

a cross-lagged panel model (CLPM) to infer reciprocal relations at the within-person level

(Hamaker et al., 2015), applications of random-intercept CLPM (RI-CLPM), which in-

cludes common factors called stable trait factors to control for between-person differences,

have been growing rapidly. It has been empirically shown that model choice of CLPM or

RI-CLPM can be critical in terms of the signs, statistical significance, and magnitudes of

key parameter estimates (i.e., cross-lagged parameters) for reciprocal relations (e.g., Orth,

Clark, Donnellan, & Robins, 2021; Usami, Murayama, & Hamaker, 2019). RI-CLPM is a
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useful analytic option, but various kinds of (SEM-based) statistical models are available

for examining reciprocal relations, and model choice is still an ongoing issue (see Andersen,

2022; Asendorpf, 2021, Hamaker, 2023; Lucas, 2023; Lüdtke & Robitzsch, 2022; Usami,

2021; Usami, Murayama, et al., 2019 and later discussion).

Along with these increasing applications and theoretical interests, Usami (2023) aimed

to synthesize the SEM-based approach traditionally used in psychology and the potential

outcome approaches used in epidemiology, in order to enable flexible and robust inference

of within-person relations. This method consists of a two-step procedure that assumes the

similar data-generating process (DGP) as assumed in the RI-CLPM. In this approach, the

within-person variability scores (WPVS) for all participants, which are disaggregated from

their stable trait factor scores, are first predicted in each variable using SEM. Then, causal

parameters modeled at the within-person level are estimated using a potential outcomes

approach with the calculated WPVS, such as marginal structural models (MSMs; Robins,

1999; Robins, Hernán, & Brumback, 2000) or structural nested (mean) models (SNMMs;

Robins, 1989, 1992). Usami (2023) originally assumed a situation where researchers sought

to investigate the unidirectional relation between variables, but it is straightforward to

extend the approach to reciprocal relations. For brevity, we will refer to this two-step

estimation approach as the TS method.

The TS method has some advantages over RI-CLPM. If researchers assume a DGP that

includes stable trait factors, then they need to model the relations among WPVS as latent

variables. This corresponds to the fact that RI-CLPM is sometimes classified as a deviation

model rather than an observation model (e.g., Andersen, 2022). However, in the standard

SEM as covariance structure analysis (CSA), estimating curvilinear (e.g., quadratic) effects

and interaction effects for latent variables can be challenging in terms of implementation,

especially if multiple indicators are not available for each variable at every time point

(e.g., Kenny & Judd, 1984; Klein & Moosbrugger, 2000; Kline, 2023; Marsh, Wen, &

Hau, 2006). Even if multiple indicators are available, identification may require strong
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parameter constraints, and implementation could be very difficult, especially for cases in

which researchers wish to include interaction effects between variables from different time

points (e.g., X∗
3Y

∗
1 for variables X∗ at t = 3 and Y ∗ at t = 1 at the within-person level).

Bayesian approach is a useful alternative (e.g., Lee, 2007; Ozkok et al., 2022), but plausible

specifications of priors and computation time can be challenging. For these reasons, usual

applications of RI-CLPM do not assume curvilinear and interaction effects of variables at

the within-person level (i.e., WPVS). On the other hand, in TS method, such effects can

be introduced in a straightforward manner because the predicted WPVS are directly used

for causal parameter estimation.

Another potential advantage of the TS method is the manner in which it accounts

for time-varying confounders from the view of causal inference. RI-CLPM (and other

SEM-based models) was originally proposed to uncover reciprocal relations between fo-

cal variables at the within-person level (X∗ and Y ∗), and it does not directly account for

time-varying confounders. One reasonable procedure to account for observed time-varying

confounders in RI-CLPM is to simply include them in the lagged regression (i.e., structural

models) for reciprocal relations like ANCOVA. However, along with the potential aforemen-

tioned restrictions in modeling curvilinear and interaction effects for observed time-varying

confounders, this approach requires researchers to correctly specify all structural models

at each time point, and parameters might be seriously biased if researchers miss some

unobserved time-varying confounders. On the other hand, as we will illustrate, a more

accurate estimate of causal parameters can be obtained under certain conditions using the

TS method, especially with SNMMs (we call these TS-SNMMs later for brevity), even if

unobserved time-varying confounders and some model misspecifications in models for focal

variables exist. Also, no models for (the distributions of) observed confounders are needed

for estimation. These advantages are particularly evident when estimating the time-specific

effects (controlled direct effect: CDE) of time-varying predictors/treatments on outcomes,

as model misspecification issues are especially likely to arise in such cases (e.g., Mulder,
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Usami, & Hamaker, 2024).

The TS method is also potentially advantageous for handling improper solutions. Though

this risk of these occurring in RI-CLPM is empirically known to be smaller than in some

SEM-based approaches, it can still frequently produce improper solutions (e.g., the non-

Hessian matrix of trait factor scores and negative variances), especially when either the

sample size or the number of time points is small (Orth et al., 2021; Usami, Todo, &

Murayama., 2019). The TS method takes a two-step estimation approach, so not all pa-

rameters are simultaneously estimated as in SEM-based approaches. This can reduce the

risk of obtaining improper solutions caused by sample fluctuations and model misspecifi-

cations.

For these reasons, the TS method can be considered as a viable alternative of RI-

CLPM (and its variants) for inferring within-person (reciprocal) relations, especially when

researchers wish to account for time-varying confounders. Comparing estimation results

between these approaches could also be useful as a kind of sensitivity analysis. However,

MSMs and SNMMs have been developed in epidemiology and we have seen few applications

of these methods in psychology, while useful introductions and applications of MSMs and

SNMMs are increasing (e.g., Loh & Ren, 2023ab; Mulder, Luijken, Penning de Vries, &

Hamaker, 2024; Mulder, Usami, et al., 2024; VanderWeele, Hawkley, Thisted & Cacioppo,

2011; Vansteelandt & Joffe, 2014). Actual applications of SNMMs have also been infrequent

in other disciplines because of limited software availability and tutorials (Vansteelandt

& Joffe, 2014), as well as its typically strongly theoretical presentation and challenging

implementation (Wallace, Moodie & Stephens, 2017a). SNMMs, however, are suitable and

robust for handling violation of the usual assumptions of no unobserved confounders and

sequential ignorability (Robins, 1999; Robins & Hernan, 2009; Vansteelandt & Joffe, 2014).

Only a brief introduction of MSMs and SNMMs was provided in Usami (2023), and there

are not many applied researchers in psychology who are capable of applying such novel

methods.
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On a related note, another important limitation of Usami (2023) is that their estima-

tion performance was assessed under restricted scenarios of model (mis)specifications with

limited conditions for the number of time points and the magnitudes of WPVS and stable

trait factor (co)variances. WPVS need to be predicted in the first step of the TS method,

which may result in less accurate causal estimates, especially when the number of time

points is limited under a misspecified measurement model. One of the primary motivations

for performing the simulation in Usami (2023) was to compare the performance of the TS

method (which aims to conduct true score centering [e.g., Asparouhov & Muthén, 2018]

based on stable trait factors) over different centering methods (i.e., observed person-mean

centering). Therefore, difference in estimation performances (e.g., the bias of causal pa-

rameters estimates and the frequency of improper solutions) between the TS method and

RI-CLPM is still an open question.

In this paper, we provide a tutorial, simulation, and illustrative example of how to use

the TS method to infer within-person (reciprocal) relations, focusing especially on using

TS-SNMMs to estimate causal parameters by utilizing the R package DTRreg (Wallace et

al., 2017ab), which was not used in Usami (2023). We demonstrate in large-scale simula-

tions that TS-SNMMs can flexibly and accurately estimate causal parameters due to them

being doubly robust, even if unobserved time-varying confounders and some model mis-

specifications in models for focal variables exist. We also show that TS-SNMMs work well

in many conditions if longitudinal data with T ≥ 4 are available, while accuracy increases

as T becomes larger. The R code for TS-SNMMs is available in a supplementary document

to make the method more accessible for applied researchers.

The remainder of this paper is organized as follows. In Section 2 we start our discussion

by introducing assumed DGPs and the definition of causal effects, while appropriately

referring to Usami (2023). Readers familiar with these may skip this (sub)section. TS-

SNMMs are introduced in Section 3, and simulations are provided in Section 4. Section 5

describes an empirical application of TS-SNMMs using data from the Tokyo Teen Cohort
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(TTC) study. A summary is provided in the final section along with a discussion of our

future research agenda.

2 ASSUMEDDATA-GENERATING PROCESS AND

DEFINITIONS OF CAUSAL EFFECT

2.1 Data-generating process

We suppose that data are generated at fixed time points and let Xit and Yit denote con-

tinuous focal variables at t (t = 1, . . . , T ) for person i: researchers wish to infer their

within-person relation. Like application of RI-CLPM, for inference of within-person rela-

tion repeated measures of outcomes as well as predictors/treatments are required. Also,

let Lit be the observed continuous and time-varying confounders. We assume a single con-

founder here for explanation purposes. For the same reason, time-invariant confounders

are not assumed here. Suppose that a time-varying confounder has three characteristics:

it is independently associated with future focal variables as well as future confounders, and

it is affected by earlier focal variables and confounders1.

Figure 1 is a directed acyclic graph (DAG) that expresses the causal relations among

variables in the assumed DGP of T = 4. Because we suppose the presence of stable trait

factors in DGP, as in RI-CLPM, this DAG includes stable trait factors I as time-invariant

factors. This DAG is similar to the one presented in Usami (2023, Figure 1b), but it

now assumes that Xit, Yit, and Lit are measured at the same time, and thus, no direct

causal relation is assumed among them within each time point. This setting is analogous

to the path diagrams of the SEM-based statistical models (e.g., RI-CLPM). Each solid

1Not only time-varying confounders L but earlier focal variables can be confounders in inferring within-

person relations of interests (e.g., Yi(t−1) would be a confounder in estimating causal effect of Xi(t−1) on

Yit in dynamic process).
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single-headed arrow represents a direct causal relation, and a dashed double-headed arrow

indicates the covarying relations due to unobserved confounding. Dashed circles are used

to express latent variables. To keep the illustration simple, here we temporarily assume

first-order linear lagged effects of variables.

By the properties of stable trait factors (specifically that the difference between the

expected value of measurement of each person and the temporal group mean is invariant

over time; see Usami, 2023), these factors have zero means (E(Iy) = E(Ix) = E(Il) = 0)

and additively influence respective measurements. For the same reason, the values of the

coefficients corresponding to the paths from these factors to the measurements are restricted

to one.

In this DAG, directed edges from WPVS, which are expressed by variable names with

an asterisk (e.g., Y ∗
3 ), are drawn to the corresponding measurements. Directed edges are

assumed between WPVS as (time-varying) latent variables rather than between measure-

ments. Without loss of generality, we assume that WPVS for all variables have zero means.

It is important to note that WPVS are also assumed to be uncorrelated with stable trait

factors (we will revisit this issue in the Discussion). As a result, like RI-CLPM, stable

trait factors I have only direct effects on measurements, and each measurement can be

decomposed into a (linear) sum of time-invariant (stable traits) and time-varying factors

(i.e., WPVS) that are mutually uncorrelated.

Under the linear causal DAG model, the DGP can be represented by the following

equations, which correspond to RI-CLPM that includes L:

Yit = µyt + Iyi + Y ∗
it , Xit = µxt + Ixi +X∗

it, Lit = µlt + Ili + L∗
it (1)

for t ≥ 1, and

Y ∗
it = βyytY

∗
i(t−1) + βyxtX

∗
i(t−1) + βyltL

∗
i(t−1) + dyit

X∗
it = βxytY

∗
i(t−1) + βxxtX

∗
i(t−1) + βxltL

∗
i(t−1) + dxit (2)

L∗
it = βlytY

∗
i(t−1) + βlxtX

∗
i(t−1) + βlltL

∗
i(t−1) + dlit
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for t ≥ 2. µ and d denote the temporal group means and residual terms, respectively, and

they are omitted in the DAG representation. As noted, stable trait factors are assumed to

be uncorrelated with WPVS. For example,

Cov(Iyi, Y
∗
it ) = 0, Cov(Iyi, X

∗
it) = 0, Cov(Iyi, L

∗
it) = 0 (3)

for a stable trait factor of a variable Y (Iyi), and the same applies to Ixi and Ili as well.

As implied in Equation (1), under these specifications, Y ∗
it , X

∗
it, and L∗

it represent tem-

poral deviations from the expected score for person i at t (i.e., µyt + Iyi, µxt + Ixi, and

µlt + Ili), whereas the stable trait factors represent stable between-person differences over

time. To put it another way, WPVS can be characterized as the difference between a mea-

surement and its expected value for each person at each time point (see Usami (2023) for

further explanation). Additionally, (co)variances of measurements at t can be expressed as

the sum of those of stable trait factor scores and WPVS. For example, for a variable Y ,

Cov(Yit, Yit′) = Cov(Y ∗
it , Y

∗
it′) + V ar(Iyi). (4)

In RI-CLPM, the initial deviations (WPVS) are modeled as exogeneous variables, and their

variances and covariances are estimated.

RI-CLPM can identify the parameters from data with T ≥ 3. If one is interested in

inferring first-order lagged effects of X∗ on Y ∗ (X∗
t−1 → Y ∗

t ), βyxt in Equation (2), which is

called a cross-lagged parameter, is key.

2.2 Definition of causal effects at the within-person level

Below we assume a similar causal DAG model to that in Figure 1. However, unlike the

previous subsection, we relax some assumptions about WPVS, specifically that higher-

order, curvilinear (e.g., quadratic), and interaction effects for WPVS can exist. The current

focus is on evaluating the within-person relation between variables, that is, how one variable

at time t − 1 (e.g., X∗
t−1) influences another variable at time t (e.g., Y ∗

t ) and vice versa
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at the within-person level. This is equivalent to CDE of X∗
t−1 on Y ∗

t . Also, we might be

interested in CDEs for a sequence of X∗
1 , X

∗
2 , · · · , X∗

t−1 on Y ∗
t . For example, in addition to

CDE of X∗
t−1 on Y ∗

t , CDE of X∗
t−2 on Y ∗

t with controlling for future X∗ (X∗
t−1), and CDE

of X∗
t−3 on Y ∗

t with controlling for future X∗ (X∗
t−1 and X∗

t−2) might be a focus.

Stable trait factors and WPVS are mutually uncorrelated, and each measurement can

be characterized as a collider in causal DAG (i.e., it is causally influenced by stable trait

factors and WPVS; Usami, 2023), so causal effects of WPVS can be defined independently

from stable trait factors. However, modeling stable trait factors through measurements is

still required for estimating causal parameters because WPVS are latent variables (Usami,

2023). Below we first explain the definition of causal effects of X∗ (as predictor) on Y ∗ (as

outcome).

We use overbars Ȳ ∗
t = {Y ∗

1 , . . . , Y
∗
t } to denote the history of Y ∗ through t and underbars

Y ∗
t = {Y ∗

t , . . . , Y
∗
T } to denote the future of this variable. Let Y ∗

it
X̄∗

i(t−1) (t = 1, . . . , T ) denote

the WPVS for the outcome that would take at time t for person i if this person had a

history of predictors X∗ at the within-person level X̄∗
i(t−1) = {X∗

i1, . . . , X
∗
i(t−1)} through

t − 1. Y ∗
it
X̄∗

i(t−1) is a potential outcome, which we connect to WPVS by the consistency

assumption (e.g., Hong, 2015; Mulder, Usami et al., 2024)

Y ∗
it = Y ∗

it
x̄∗
i(t−1) (5)

if X̄∗
i(t−1) = x̄∗

i(t−1); otherwise, Y
∗
it
x̄∗
i(t−1) is counterfactual. Note that Y ∗

it is unobservable,

and thus can be predicted in the first step of the TS method, while potential outcomes for

measurements (i.e., Yit) are considered in the standard potential outcome approach.

In the potential outcome approach, causal effect refers to the contrast between potential

outcomes under different levels of treatments/predictors (i.e. X∗). The average causal effect

on Y ∗
it when X∗

i(t−1) increases one unit from the reference value x∗r
i(t−1) at time t− 1 can be

expressed as

E(Y ∗
it
x̄∗
i(t−2)

,x∗r
i(t−1)

+1 − Y ∗
it
x̄∗
i(t−2)

,x∗r
i(t−1)) = E(Y ∗

it
x̄∗
i(t−2)

,x∗r
i(t−1)

+1)− E(Y ∗
it
x̄∗
i(t−2)

,x∗r
i(t−1)). (6)
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The standard assumption of no unobserved confounders (or sequential ignorability) indi-

cates that

Y ∗
it
x̄∗
i(t−2)

,0⊥⊥X∗
i(t−1)|Ȳ ∗

i(t−1), L̄
∗
i(t−1), X̄

∗
i(t−2) = x̄∗

i(t−2). (7)

Here, (x̄∗
i(t−2), 0) is the counterfactual history, that is, the history that agrees with x̄∗

i(t−2)

through time t−2 and is zero thereafter. Equation (7) indicates that the potential outcome

at time t (were the person receives X∗
i(t−1) = 0) is independent of X∗

i(t−1), given the observed

confounders in past time (X̄∗
i(t−2), Ȳ

∗
i(t−1), L̄

∗
i(t−1))

2.

Along with the assumed causal DAG above, as well as the consistency and sequential

ignorability, we impose the stable unit treatment value assumption (SUTVA; no unmodeled

spillovers, e.g., Hong, 2015) and assumptions of positivity (i.e., the probability of taking

each level of predictor (X∗) conditional on past variables is greater than zero) and modular-

ity (i.e., mechanisms that are not directly targeted by treatment/predictors are not altered).

Under these assumptions, the average causal effect in Equation (6) can be expressed by the

difference in conditional means given by information on observed confounders as

E(Y ∗
it
x̄∗
i(t−2)

,x∗r
i(t−1)

+1)− E(Y ∗
it
x̄∗
i(t−2)

,x∗r
i(t−1))

=E(Y ∗
it |Ȳ ∗

i(t−1), L̄
∗
i(t−1), X̄

∗
i(t−2) = x̄∗

i(t−2), X
∗
i(t−1) = x∗r

i(t−1) + 1)

− E(Y ∗
it |Ȳ ∗

i(t−1), L̄
∗
i(t−1), X̄

∗
i(t−2) = x̄∗

i(t−2), X
∗
i(t−1) = x∗r

i(t−1)). (8)

In other words, the average causal effect can be evaluated from the difference in conditional

means of Y ∗
it between persons who receive X∗

i(t−1) = x∗r
i(t−1)+1 (i.e., levels that are x∗r

i(t−1)+1

larger than their expected scores µx(t−1) + Ixi) and X∗
i(t−1) = x∗r

i(t−1), given information on

the observed confounders’ history.

Similarly, we might be interested in CDEs as causal effects for a sequence of X∗ (e.g.,

X̄∗
i(t−1)) on Y ∗

it . Suppose T = 3, and that the DGP can be represented by linear and first-

order regression models, as in Equations (1) and (2) (assuming no interaction effects for
2Though Ȳ ∗

i(t−1) and X̄∗
i(t−2) are the outcome and predictors, they can be characterized as confounders

in the assumed causal DAG
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WPVS). Then, a conditional mean E(Y ∗
i3|Ȳ ∗

i2, L̄
∗
i2, X̄

∗
i2 = x̄∗

i2) at t = 3 can be expressed as

a linear (weighted) sum of the terms x∗
i1 and x∗

i2:

E(βyy3Y
∗
i2 + βyx3x

∗
i2 + βyl3L

∗
i2 + dyi3)

=βyy3(βyy2E(Y ∗
i1) + βyx2x

∗
i1 + βyl2E(L∗

i1)) + βyx3x
∗
i2 + βyl3(βly2E(Y ∗

i1) + βlx2x
∗
i1 + βll2E(L∗

i1))

= [βyy3(βyy2E(Y ∗
i1) + βyl2E(L∗

i1)) + βyl3(βly2E(Y ∗
i1) + βll2E(L∗

i1))]︸ ︷︷ ︸
0

+ [βyy3βyx2 + βyl3βlx2]︸ ︷︷ ︸
β∗
31

x∗
i1 + βyx3︸︷︷︸

β∗
32

x∗
i2

=β∗
31x

∗
i1 + β∗

32x
∗
i2. (9)

The first term in the third line becomes zero because WPVS have zero means. From this

result, CDEs of X∗
i1 and X∗

i2 when increasing one unit from each reference value (x∗r
i1 and

x∗r
i2 ) become β∗

31 and β∗
32, respectively. The (average) joint effects refer to the sum of CDEs

when commonly increasing one unit from the reference values x∗r
i1 and x∗r

i2 and it becomes

β∗
31+β∗

32. Note that β
∗
31 (= βyy3βyx2+βyl3βlx2; the CDE of X∗

1 on Y ∗
3 ) can also be evaluated

by tracing the two paths X∗
1 → Y ∗

2 → Y ∗
3 (= βyy3βyx2) and X∗

1 → L∗
2 → Y ∗

3 (= βyl3βlx2)

that start at X∗
1 and end at Y ∗

3 , shown in Figure 1.

If the effect of X∗
1 on Y ∗

2 is also a focus, E(Y ∗
i2|Y ∗

i1, L
∗
i1, X

∗
i1 = x∗

i1) at t = 2 can be

expressed as

E(βyy2Y
∗
i1 + βyx2x

∗
i1 + βyl2L

∗
i1) = [βyy2E(Y ∗

i1) + βyl2E(L∗
i1)]︸ ︷︷ ︸

0

+ βyx2︸︷︷︸
β∗
21

x∗
i1 = β∗

21x
∗
i1, (10)

and thus the CDE of X∗
i1 when increasing one unit from the reference value x∗r

i1 at the

within-person level becomes β∗
21 = βyx2, which is equivalent to the cross-lagged parameter

in Equation (2). Note that because stable trait factors are not associated with the WPVS

in the assumed DGP, the effects of X∗ on Y ∗ can be numerically equivalent to those on Y

(i.e., measurements) (Usami, 2023).

Compared with other disciplines, such as epidemiology, investigations of joint effects in

psychology have been limited in applications of SEM-based approaches (e.g., RI-CLPM)
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where only the cross-lagged parameters gather attention from researchers (e.g., Mulder,

Usami et al., 2024). However, useful information can be gained by interpreting each CDE

and joint effect of time-varying treatments/predictors (e.g., how a change in X∗
(t−2) at two

previous time points influences Y ∗
t , fixing X∗

(t−1)).

Unlike the usual applications of SNMMs in epidemiology, in SEM-based approaches

(e.g., RI-CLPM) in psychology researchers are often interested in uncovering reciprocal

relations of variables, and then the causal effect of Y ∗ on X∗ is also a focus. In a similar

manner, the average causal effect of Y ∗
i(t−1) on X∗

it when Y ∗
i(t−1) increases one unit from the

reference value y∗ri(t−1) at t− 1 can be expressed as

E(X∗
it
ȳ∗
i(t−2)

,y∗r
i(t−1)

+1 −X∗
it
ȳ∗
i(t−2)

,y∗r
i(t−1)). (11)

In the TS method, when interested in inferring reciprocal relations between variables X∗

and Y ∗, this is carried out by conducting separate analyses with X∗ and Y ∗ as outcomes,

respectively.

We can now summarize the assumptions for identifying causal parameters in the TS

method: (i) measurements (T ≥ 3) are expressed by a linear sum of stable trait factors

and WPVS that are mutually uncorrelated, (ii) WPVS are expressed by functions of those

in past time, (iii) consistency, (iv) no unobserved confounders, (v) SUTVA, (vi) positivity,

(vii) modularity, The first assumption is unique to the TS method and RI-CLPM, and we

will revisit this issue in the Discussion.

Regarding the second assumption, if the DGP can be represented by linear equations,

such as in Equations (1) and (2) (assuming no interaction effects for WPVS), then RI-

CLPM (that includes L) can identify causal parameters. However, modeling curvilinear

(e.g., quadratic) and interaction effects for WPVS as latent variables can be often chal-

lenging in RI-CLPM. Furthermore, all structural models (as in Equation (2)) should be

correctly specified, which might be very restrictive. The risk of obtaining improper solu-

tions can also be an obstacle when applying RI-CLPM. TS-SNMMs can overcome these
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potential problems: they can provide a more flexible and robust inferential framework to-

ward model misspecifications, resulting in more accurate estimates of causal parameters

with a lower risk of improper solutions.

3 INTRODUCTION OF THE TS-SNMMs

In TS-SNMMs, WPVS are first predicted for each variable by SEM that only models

measurement parts with stable trait factors. Causal parameters in the structural model

are then estimated by SNMMs using predicted WPVS. Usami (2023) argues that this kind

of two-step approach has some strengths compared with simultaneous estimation, such

as (i) minimizing the risk of potential confounding in interpreting the estimation results

when either the measurement or the structural model is misspecified, (ii) having a greater

feasibility for analyses (because common factors or unit effects are not explicitly modeled

in SNMMs), and (iii) having less risk of obtaining improper solutions. Regarding the first

point, when a simultaneous estimation procedure like RI-CLPM is used, misspecification

in the structural models at the within-person level may greatly affect parameter estimates

in the measurement model ((co)variances of stable factors and WPVS), and vice versa.

3.1 Step 1: Estimation of measurement models and prediction

of WPVS

The first step is subdivided into two sub-steps: (i) specification and estimation of the

measurement models and (ii) prediction of WPVS.

3.1.1 Specification and estimations of measurement models

The RI-CLPM and TS approaches commonly assume (linear) measurement models like

Equation (1). This equation can be viewed as a model similar to the factor analysis model,

14



which includes a single common factor I (whose factor loadings are all one) and a unique

factor in the form of WPVS. In vector notation, this equation for outcome Y becomes

Yi = µy + Iyi1T + Y ∗
i , (12)

where µy is a T × 1 mean vector, E(Iyi) = 0, V ar(Iiy) = ϕ2
y, and 1T denotes the T × 1

vector whose elements are all one. Y ∗
i is a T × 1 vector of WPVS, and E(Y ∗

i ) = 0 and

Cov(Iyi, Y
∗
it ) = 0. We denote as Ψy a T × T variance-covariance matrix of WPVS. This

implies that the variance-covariance matrix of Y (denoted as Σy) is of the form:

Σy = ϕ2
y1T1

t
T +Ψy. (13)

Unlike the standard factor analysis model, Ψy has a dependence structure and is not diago-

nal. Therefore, in using SEM to estimate the parameters in Equation (12), some structure,

such as the autoregressive (AR) structure, must be specified in Ψy to enable model identi-

fication. The specified model can then be diagnosed via model fit indices and local fit like

residual correlations.

Similarly, we also set measurement models for the other variables X and L separately

in this sub-step, then estimate parameters for the mean vectors (µx and µl), stable trait

factor variances (ϕ2
x and ϕ2

l ), and variance-covariance matrices of WPVS (Ψx and Ψl).

3.1.2 Predicting WPVS

Let Zi = (Y t
i , X

t
i , L

t
i)

t and Z∗
i = (Y ∗t

i , X∗t
i , L∗t

i )
t be vectors of measurements and WPVS,

respectively, and let µ = (µt
y, µ

t
x, µ

t
l)

t be a mean vector. Also, let Σ and Ψ be covariance

matrices for measurements Zi and WPVS Z∗
i .

We consider linear prediction of WPVS Ẑ∗
i under the condition that Σ and Ψ are known.

Consider a 3T × 3T weight matrix W that provides WPVS from measurements

Ẑ∗
i = W t(Zi − µ), (14)
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satisfying the relation

E(Ẑ∗
i Ẑ

∗t
i ) = W tE[(Zi − µ)(Zi − µ)t]W = W tΣW = Ψ. (15)

Unlike standard applications of factor analysis, we are interested in predicting WPVS

(unique factor scores) rather than stable trait factor (common factor) scores. With this

point in mind, the W that can minimize the risk function defined as the trace of a residual

covariance matrix (i.e., the mean squared error MSE(Ẑ∗
i )=E[(Ẑ∗

i − Z∗
i )

t(Ẑ∗
i − Z∗

i )]) and

also satisfy the relation in Equation (15) can be directly obtained by the so-called (linear)

correlation preserving predictor (e.g., ten Berge, Krijinen, Wansbeek, & Shapiro, 1999,

p.317)

W t = Ψ1/2(Ψ3/2Σ−1Ψ3/2)
−1/2

Ψ3/2Σ−1. (16)

Here, for a positive (semi)definite matrix C, we denote as C1/2 the positive (semi)definite

matrix whose square equals C. Matrices C−1/2 and C3/2 are the inverse (if it exists) and

third power of C1/2, respectively.

We use the sample means Z̄ and (unbiased) variance-covariance matrix S as estimators

of µ and Σ. As implied from the relation in Equation (4), we use the estimated stable trait

factor variances to estimate Ψ as

Ψ̂ = S − Φ̂⊗ 1T1
t
T , (17)

where Φ̂ is an estimator of a 3× 3 stable trait factor variance-covariance matrix Φ:

Φ̂ =


ϕ̂2
(Y ) ϕ̂(Y,X) ϕ̂(Y,L)

ϕ̂(Y,X) ϕ̂2
(X) ϕ̂(X,L)

ϕ̂(Y,L) ϕ̂(X,L) ϕ̂2
(L)

 . (18)

Since stable trait factor covariances are not estimated in the previous sub-step, covariances

between calculated linear correlation preserving predictors from each variable are used (see

Usami (2023) for further details). From Equations (14) and (16)–(18), we can predict

WPVS Ẑ∗
i without specifying the structural models among variables at the within-person

level, successfully maintaining independence from the next step.
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3.2 Applying SNMMs

SNMMs were developed in epidemiology to estimate the causal effects of a sequence of time-

varying treatments/predictors in longitudinal studies, with effectively handling violation of

no unobserved confounders (U) under the assumed causal DAG where U influences both

the outcomes Y and the observed confounders L (Robins & Hernán, 2009; Vansteelandt &

Joffe, 2014). For notational simplicity, we use the symbols Y ∗, X∗, and L∗ below to denote

WPVS that are predicted in the first step.

For explanation purposes, we assume that one is interested in evaluating the CDEs and

joint effects of X̄∗
T−1 on the outcome of the last time point (Y ∗

T ), while allowing its curvilinear

(e.g., quadratic) and interaction effects. SNMMs simulate the sequential removal of the

effect (called blip) that X̄∗
T−1 has on Y ∗

T , after having removed the effects of all subsequent

treatments/predictors. More specifically, SNMMs models a blip in X̄∗
t on Y ∗

T while holding

all future treatments/predictors at t′ ≥ t fixed at a reference level 0 (i.e., the level that is

equal to the expected scores of a person in the current context).

Linear SNMMs parameterize contrasts of Y ∗
iT

x̄∗
i(t−1) and Y ∗

iT
x̄i(t−2),0 conditionally on con-

founder histories through t− 1 (t = 2, . . . , T ) as

E(Y ∗
iT

x̄∗
i(t−1) − Y ∗

iT
x̄∗
i(t−2)

,0|Ȳ ∗
i(t−1) = ȳ∗i(t−1), L̄

∗
i(t−1) = l̄∗i(t−1), X̄

∗
i(t−1) = x̄∗

i(t−1))

= ht(ȳ
∗
i(t−1), l̄

∗
i(t−1), x̄

∗
i(t−1); τ), (19)

where ht−1(ȳ
∗
i(t−1), l̄

∗
i(t−1), x̄

∗
i(t−1); τ) is a known function with parameter vector τ (Vanstee-

landt & Joffe, 2014).

Suppose we assume a DGP similar to the one in Figure 1 that has not only the first-order

(linear) effect of X∗ but also its interaction effect with L∗ for blip. In the later empirical
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example using the data of T = 4, a linear SNMM may be given by

E(Y ∗
i4
x∗
i1,x

∗
i2,x

∗
i3 − Y ∗

i4
x∗
i1,x

∗
i2,0|Ȳ ∗

i3 = ȳ∗i3, L̄
∗
i3 = l̄∗i3, X̄

∗
i3 = x̄∗

i3) = (β∗
3 + γ∗

3 l
∗
i3)x

∗
i3,

E(Y ∗
i4
x∗
i1,x

∗
i2,0 − Y ∗

i4
x∗
i1,0,0|Ȳ ∗

i2 = ȳ∗i2, L̄
∗
i2 = l̄∗i2, X̄

∗
i2 = x̄∗

i2) = (β∗
2 + γ∗

2 l
∗
i2)x

∗
i2, (20)

E(Y ∗
i4
x∗
i1,0,0 − Y ∗

i4
0,0,0|Y ∗

i1 = y∗i1, L
∗
i1 = l∗i1, X

∗
i1 = x∗

i1) = (β∗
1 + γ∗

1 l
∗
i1)x

∗
i1.

Here, the first equation models the CDE of X∗
i3 on Y ∗

i4, the second models the CDE of X∗
i2

on Y ∗
i4, and the third models the CDE of X∗

i1 on Y ∗
i4. This is just one simple example,

but another specification, say (β∗
3 + γ∗

31l
∗
i1 + γ∗

32l
∗
i2 + γ∗

33l
∗
i3)x

∗
i3, could be possible to express

the interaction effects between X∗
i3 and the past confounders. From Equation (20), the

average joint effects of X̄∗
i3 on Y ∗

i4 when increasing one unit from the reference values in

each predictor become

β∗
3 + γ∗

3 l
∗
i3 + β∗

2 + γ∗
2 l

∗
i2 + β∗

1 + γ∗
1 l

∗
i1. (21)

If no interaction effects are assumed, this becomes

β∗
3 + β∗

2 + β∗
1 . (22)

SNMMs consider a transformation U∗
i(t−1)(τ) (t = 2, . . . , T ), the mean value of which is

equal to the mean that would be observed if treatments/predictors were stopped from time

t− 1 onward, in the sense that

E(U∗
i(t−1)(τ)|Ȳ ∗

i(t−1), L̄
∗
i(t−1), X̄

∗
i(t−2) = x̄∗

i(t−2), X
∗
i(t−1))

=E(Y ∗
iT

x̄∗
i(t−2)

,0|Ȳ ∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−2) = x̄∗

i(t−2), X
∗
i(t−1)). (23)

Here, U∗
i(t−1)(τ) is a vector with components Y ∗

iT −
∑T−1

k=t−1 hk(Ȳ
∗
ik, L̄

∗
ik, X̄

∗
ik; τ). For instance,

in the current example for T = 4,

U∗
i3(τ) = Y ∗

i4 − (β∗
3 + γ∗

3L
∗
i3)X

∗
i3,

U∗
i2(τ) = Y ∗

i4 − (β∗
3 + γ∗

3L
∗
i3)X

∗
i3 − (β∗

2 + γ∗
2L

∗
i2)X

∗
i2, (24)

U∗
i1(τ) = Y ∗

i4 − (β∗
3 + γ∗

3L
∗
i3)X

∗
i3 − (β∗

2 + γ∗
2L

∗
i2)X

∗
i2 − (β∗

1 + γ∗
1L

∗
i1)X

∗
i1.
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The assumption of no unobserved confounders (Equation (7)) together with the identity

(Equation (23)) implies that

E(U∗
i(t−1)(τ)|Ȳ ∗

i(t−1), L̄
∗
i(t−1), X̄

∗
i(t−1)) = E(U∗

i(t−1)(τ)|Ȳ ∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−2)), (25)

indicating the conditional independence betweenX∗
i(t−1) and U∗

i(t−1). In the current example

for T = 4, this indicates

U∗
i1⊥⊥X∗

i1|Y ∗
i1, L

∗
i1, U∗

i2⊥⊥X∗
i2|Ȳ ∗

i2, L̄
∗
i2, X

∗
i1, U∗

i3⊥⊥X∗
i3|Ȳ ∗

i3, L̄
∗
i3, X̄

∗
i2. (26)

The parameters τ can be estimated by solving the estimating equation EN [f(τ ; η̂, κ̂)] = 0

implied by these moment conditions, where EN denotes the empirical average function

(e.g., Vansteelandt & Joffe, 2014):

f(τ ; η̂, κ̂) =
T∑
t=2

[dt−1(Ȳ
∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−1))− E(dt−1(Ȳ

∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−1))|Ȳ ∗

i(t−1), L̄
∗
i(t−1), X̄

∗
i(t−2))]◦

[U∗
i(t−1)(τ)− E(U∗

i(t−1)(τ)|Ȳ ∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−2))], (27)

where

dt−1(Ȳ
∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−1)) = E

[
∂U∗

i(t−1)(τ)

∂τt−1

∣∣∣∣∣ Ȳ ∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−1)

]
. (28)

Here, τt−1 denotes the elements in τ that are relevant to the assumption of conditional

independence (Equation (26)) at t− 1. For instance, in the current example for T = 4, we

can apply Equation (24) to obtain

d3(Ȳ
∗
i3, L̄

∗
i3, X̄

∗
i3) = E

[
∂U∗

i3(τ)

∂τ3

∣∣∣∣ Ȳ ∗
i3, L̄

∗
i3, X̄

∗
i3

]
=

(
∂U∗

i3(τ)

∂β∗
3

,
∂U∗

i3(τ)

∂γ∗
3

)t

=

(
∂

∂β∗
3

[Y ∗
i4 − (β∗

3 + γ∗
3L

∗
i3)X

∗
i3] ,

∂

∂γ∗
3

[Y ∗
i4 − (β∗

3 + γ∗
3L

∗
i3)X

∗
i3]

)t

= (−X∗
i3,−L∗

i3X
∗
i3)

t

d2(Ȳ
∗
i2, L̄

∗
i2, X̄

∗
i2) =

(
∂U∗

i2(τ)

∂β∗
2

,
∂U∗

i2(τ)

∂γ∗
2

)t

= (−X∗
i2,−L∗

i2X
∗
i2)

t

d1(Y
∗
i1, L

∗
i1, X

∗
i1) =

(
∂U∗

i1(τ)

∂β∗
1

,
∂U∗

i1(τ)

∂γ∗
1

)t

= (−X∗
i1,−L∗

i1X
∗
i1)

t. (29)
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This estimating equation essentially sets the sum across the time points of the condi-

tional covariances between U∗
i(t−1)(τ) and the function dt−1(Ȳ

∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−1)), given

confounders, to zero. More specifically, in this example, the elements in Equation (27)

essentially become

[X∗
i3 − E(X∗

i3|Ȳ ∗
i3, L̄

∗
i3, X̄

∗
i2)]× [U∗

i3(τ)− E(U∗
i3(τ)|Ȳ ∗

i3, L̄
∗
i3, X̄

∗
i2)]

[L∗
i3X

∗
i3 − L∗

i3E(X∗
i3|Ȳ ∗

i3, L̄
∗
i3, X̄

∗
i2)]× [U∗

i3(τ)− E(U∗
i3(τ)|Ȳ ∗

i3, L̄
∗
i3, X̄

∗
i2)]

[X∗
i2 − E(X∗

i2|Ȳ ∗
i2, L̄

∗
i2, X

∗
i1)]× [U∗

i2(τ)− E(U∗
i2(τ)|Ȳ ∗

i2, L̄
∗
i2, X

∗
i1)]

[L∗
i2X

∗
i2 − L∗

i2E(X∗
i2|Ȳ ∗

i2, L̄
∗
i2, X

∗
i1)]× [U∗

i2(τ)− E(U∗
i2(τ)|Ȳ ∗

i2, L̄
∗
i2, X

∗
i1)]

[X∗
i1 − E(X∗

i1|L∗
i1, L

∗
i1)]× [U∗

i1(τ)− E(U∗
i1(τ)|Y ∗

i1, L
∗
i1)]

[L∗
i1X

∗
i1 − L∗

i1E(X∗
i1|Y ∗

i1, L
∗
i1)]× [U∗

i1(τ)− E(U∗
i1(τ)|Y ∗

i1, L
∗
i1)]. (30)

If homoscedasticity of the conditional variance U∗
i(t−1)(τ) given confounders is satisfied, the

local semiparametric efficiency under the SNMM is attained by choosing dt−1(Ȳ
∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−1)),

as in Equation (28) (Vansteelandt & Joffe, 2014).

As seen in Equation (30), solving the estimating equation (Equation (27)) requires a

treatment model A for the treatment/predictor X∗
i(t−1): f(X

∗
i(t−1)|Ȳ ∗

i(t−1), L̄
∗
i(t−1), X̄

∗
i(t−2); η).

It also requires a treatment-free model B (Wallace et al., 2017b) for the conditional mean

of U∗
i(t−1)(τ), namely, f(U∗

i(t−1)(τ)|Ȳ ∗
i(t−1), L̄

∗
i(t−1), X̄

∗
i(t−2);κ). Notably, when the parameters

η and κ are variation-independent, the estimator that solves Equation (27) (called G-

estimator), obtained by substituting η and κ with consistent estimators, are doubly robust

(Robins & Rotnitzky, 2001, cited from Vansteelandt & Joffe, 2014; see also Loh & Ren,

2023a), meaning that estimates of causal parameters are consistent when either model A or

model B is correctly specified. Note that parameters τ can be estimated by setting outcome

models that include predicted X̂∗
i(t−1) obtained by treatment model as well as (residual of)

predictor/treatment and confounders, and also by using OLS estimator or SEM framework

(e.g., Loh & Ren, 2023ab; Mulder, Usami et al., 2024). The R package DTRreg we will

soon illustrate later also utilizes the least squares for estimating τ .
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Though we have supposed situations with CDEs (and joint effect) of X̄∗
3 on Y ∗

4 , the

CDEs of X̄∗
t−1 on Y ∗

t for t < 4 can also be modeled and estimated in a similar manner (e.g.,

Loh & Ren, 2023a). Likewise, the opposite relation for the effects of Ȳ ∗
t−1 on X∗

t can also

be investigated with a separate procedure.

To summarize, in the second step of using (linear) SNMMs, we first specify the blip

model (e.g., Equation (20)) for time-varying treatments/predictors that may have curvilin-

ear and interaction effects (e.g., X∗2
t−1 and X∗

t−1L
∗
t−1). We then consider a transformation

U∗
i(t−1)(τ) (e.g., Equation (24)), and the parameters for blip (τ) are estimated based on

moment conditions implied by conditional independence (e.g., Equation (26)). When es-

timating the parameters, the treatment model A and the treatment-free model B need to

be specified based on the assumed DGP, but SNMMs have the property of being doubly

robust. We further explain below the specifications of these models using the R package

DTRreg (Wallace et al., 2017b).

3.3 SNMMs via the R package DTRreg

The framework of SNMMs is often presented using estimation equations like Equation (27).

However, Wallace et al (2017a) explained that the same calculation may in fact be con-

ducted using a relatively straightforward series of matrix equations based on least squares

(see Wallace & Moodie, 2015, Loh & Ren, 2023a, and the Web Appendix3 provided by

Wallace et al., 2017a for more details). More specifically, the final stage (i.e., t = T )

blip parameters are estimated first, before working backwards until every stage at t has

been analyzed. By working recursively, we are able to calculate each potential outcome by

plugging in all future blip parameters.

Suppose we assume a DGP similar to that in Figure 1, and first-order (linear) effects

of X∗ and its interaction effect with L∗ are assumed for the blip model in T = 4, as in

3http://links.lww.com/EDE/B134
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Equation (20). β∗
3 and γ∗

3 (i.e., the effects associated with X∗
i3 on Y ∗

i4) are first estimated

using the moment condition induced by the conditional independence between X∗
i3 and U∗

i3

(Equation (26)). After plugging in these estimates, β∗
2 and γ∗

2 are estimated next based on

the conditional independence between X∗
i2 and U∗

i2. Finally, using the estimates obtained so

far, β∗
1 and γ∗

1 are estimated based on the conditional independence between X∗
i1 and U∗

i1.

Even if this matrix equations approach are taken, specifications of the treatment model A

and the treatment-free model B are required. These models are expressed in the R package

DTRreg as treat.mod and tf.mod, respectively.

In the current example, from the assumed DGP A can be specified as an (linear) AR(1)

model. If a researcher is interested in the CDEs (and joint effect) of X̄∗
3 on Y ∗

4 , treat.mod

may be specified in the R package DTRreg as

treat.mod <- list(X1~1, X2~X1+L1+Y1, X3~X2+L2+Y2).

Note that X1~1 indicates that only an intercept is included because X∗
1 is now treated as

an exogenous variable. In B, because the outcomes Y ∗ are modeled by the similar (linear)

AR(1) model (with interaction effects between X∗ and L∗) in the assumed DGP, if X∗
3 = 0,

then the conditional means of Y ∗
4 used for U3(τ) (given Ȳ ∗

3 , L̄
∗
3, and X̄∗

2 ) can be expressed

by a linear (weighted) sum of Y ∗
3 and L∗

3
4. Next, if X∗

2 = X∗
3 = 0, then the conditional

means of Y ∗
4 used for U2(τ) (given Ȳ ∗

2 , L̄
∗
2, and X∗

1 ) becomes a linear (weighted) sum of Y ∗
2

and L∗
2. Likewise, if X̄∗

3 = 0, then the conditional means of Y ∗
4 used for U1(τ) (given Y ∗

1

and L∗
1) becomes a linear (weighted) sum of Y ∗

1 and L∗
1. Thus, tf.mod can be specified in

the R package DTRreg as

tf.mod <- list(~Y1+L1, ~Y2+L2, ~Y3+L3).

Note that one can allow curvilinear and interaction effects for WPVS in A and B, but this

can be challenging when using RI-CLPM as CSA.

4Because there are no direct effects of X̄∗
2 , Ȳ

∗
2 and L̄∗

2 on Y ∗
4 in the assumed DAG, they can be omitted

here.
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In addition to these, the blip model needs to be specified in the R package DTRreg.

Since the interaction effect between X∗ and L∗ is now assumed, the blip model (expressed

as blip.mod) can be expressed as

blip.mod <- list(~L1, ~L2, ~L3).

If no interaction effect is assumed, then the specification becomes

blip.mod <- list(~1, ~1, ~1).

The causal parameters τ can now be estimated in the R package DTRreg by three models

specified so far:

mod<-DTRreg(Y4, blip.mod, treat.mod, tf.mod, var.est="sandwich", type="alt"),

where the option var.est="sandwich" specifies the robust (or sandwich) variance estima-

tor obtained using standard estimating equation theory (Web Appendix in Wallace et al.,

2017a; see Hardin & Hilbe, 2013 pp.30-34 for further details). Though nuisance parameters

η and κ need to be accounted for to obtain better estimates of standard errors, Wallace

et al. (2017a) explained that sandwich estimators that ignore the nuisance parameter es-

timation typically perform as well as the bootstrap or the nuisance parameter corrected

standard error. The package DTRreg also offers a variety of more complex options, includ-

ing bootstrap, and it can be specified by a combination of var.est="boot" and B=n for

the number of bootstrap replications (Wallace et al., 2017b).

Using the command type="alt", summary(mod) and coef(mod) return summaries and

blip parameter estimates in a fashion similar to more familiar commands like lm and glm

(Web Appendix in Wallace et al., 2017a). Additionally, the package DTRreg will automati-

cally ignore any persons with missing data (thereby carrying out a complete-cases analysis),

but if the option missing = "ipcw" is specified, then the inverse probability of censored

weights (e.g., Hernan & Robins, 2021) is used. The probability of censoring is estimated via

logistic regression on the full covariate history up to that point (Web Appendix in Wallace

et al., 2017a).
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4 SIMULATIONS

There are two main goals in the simulations. The first is to investigate the performance

of TS-SNMMs under various data-generating conditions in which data are generated by a

linear sum of stable trait factors and WPVS, as in RI-CLPM. In the first simulation, we

assume there are no misspecifications in the structural models. The second is to demon-

strate the robustness of TS-SNMMs and to compare its performance to RI-CLPM under

the presence of unobserved time-varying confounders U∗ (that influence outcomes Y ∗ and

observed time-varying confounders L∗) and model misspecifications caused by observed

time-varying confounders L∗ (whose direct second-order effect on the outcome is ignored)

in the structural model. Second and third simulations are performed for this purpose.

Throughout the simulations, we suppose a situation where researchers want to evaluate

the CDEs of X∗
i(T−2) and X∗

i(T−1) (i.e., we do not focus on the CDEs from X̄∗
i(T−3)) on Y ∗

iT ,

and vice versa for the reciprocal relation. For simplicity, we also assume that the interaction

effects of predictors with observed confounders are not present.

4.1 Scenario 1: No misspecifications in the structural models

4.1.1 Method

Three stable trait factors are first generated by the multivariate normal:
Iyi

Ixi

Ili

 = MVN




0

0

0

 ,


ϕ2 ϕ2rB ϕ2rB

ϕ2rB ϕ2 ϕ2rB

ϕ2rB ϕ2rB ϕ2


 , (31)
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where ϕ2 is a stable trait factor variance and rB is a correlation between factors. The initial

WPVS are generated independently from the stable trait factors as
Y ∗
i1

X∗
i1

L∗
i1

 = MVN




0

0

0

 ,


1− ϕ2 (1− ϕ2)rW (1− ϕ2)rW

(1− ϕ2)rW 1− ϕ2 (1− ϕ2)rW

(1− ϕ2)rW (1− ϕ2)rW 1− ϕ2


 , (32)

where rW is a correlation among the initial WPVS. Then, the WPVS at successive times

are sequentially generated via a first-order linear regression model with time-invariant co-

efficients:

Y ∗
it = 0.30Y ∗

i(t−1) + 0.20X∗
i(t−1) + 0.20L∗

i(t−1) + dyit

X∗
it = 0.20Y ∗

i(t−1) + 0.30X∗
i(t−1) + 0.20L∗

i(t−1) + dxit (33)

L∗
it = 0.20Y ∗

i(t−1) + 0.20X∗
i(t−1) + 0.30L∗

i(t−1) + dlit.

When T = 3, this parameter setting indicates (see Equation (9) for the calculation)

E(Y ∗
i3
x̄∗
i2) = E(0.30Y ∗

i2 + 0.20L∗
i2) + 0.20x∗

i2 = (0.06x∗
i1 + 0.04x∗

i1) + 0.20x∗
i2 = 0.10x∗

i1 + 0.20x∗
i2

E(X∗
i3
ȳ∗i2) = 0.10y∗i1 + 0.20y∗i2. (34)

More generally, the CDEs of X∗
i(T−2) and X∗

i(T−1) (with X̄∗
i(T−3) not manipulated) on Y ∗

iT can

be evaluated byE(Y ∗
iT

x∗
i(T−2)

,x∗
i(T−1)) = 0.10x∗

i(T−2)+0.20x∗
i(T−1). Similarly, E(X∗

iT
y∗
i(T−2)

,y∗
i(T−1)) =

0.10y∗i(T−2) + 0.20y∗i(T−1). Therefore, accurately estimating these four coefficients of CDEs

(0.10, 0.20, 0.10, 0.20)t for within-person reciprocal relations is a shared goal between TS-

SNMMs and RI-CLPM.

The variance of the normal residual d for each variable was set so that ratio of the

variance of WPVS at time t (e.g., var(Y ∗
it ) for Y ) to that at time t = 1 (e.g., var(Y ∗

i1))

becomes var(Y ∗
it )/var(Y

∗
i1) =

T−t+(t−1)ω
T−1

. More specifically, when t = T , this ratio becomes

ω (i.e., ω = var(Y ∗
iT )/var(Y

∗
i1)). When ω = 1, the variance of WPVS is constant over time.

Note that residual variances were controlled over time in the simulations of Usami (2023).
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Like RI-CLPM, measurements are then generated as

Yit = Iyi + Y ∗
it , Xit = Ixi +X∗

it, Lit = Ili + L∗
it, (35)

where temporal group means are set to zero at each time point for each variable.

In this simulation, we systematically changed the total number of persons to N =

200, 600, 1000, the number of time points to T = 3, 4, 6, 9, the variances of stable trait

factors to ϕ2 = 0.1, 0.4, 0.7, the correlations between stable trait factors to rB = 0.1, 0.3, 0.5,

the correlations between initial WPVS to rw = 0.1, 0.3, 0.5, and the ratio of the variance of

WPVS at time t = T to that at time t = 1 to ω = 1, 3, 5. Some major differences from the

simulations in Usami (2023) are that more varied specifications of T and the manipulations

of rB, rW , and ω. By crossing these factors, we generated 200 simulation data for each

combination of factors. Under each simulation condition, we calculated the bias and root

mean squared error (RMSE) of estimates from TS-SNMMs and RI-CLPM (which assumes

first-order lagged regressions that include L∗).

In the first step of TS-SNMMs, a model that assumes a linear AR(1) structure with time-

varying autoregressive coefficients and residual variances was specified to predict WPVS

in each variable when T = 3. The models with similar AR(2) and AR(3) structures were

also specified in the T = 4 and T = 6, 9 conditions, respectively. Note that in the current

DGP, a true measurement model for each variable has an AR(T − 1) structure in WPVS,

but such a measurement model cannot be identified. Therefore, the measurement model

is more or less misspecified in the current setting. In the second step, both the treatment

model A and the treatment-free models B were correctly specified. For example, in T = 9

(the CDEs of X∗
7 and X∗

8 on Y ∗
9 ), three models are specified in the package DTRreg as

treat.mod <- list(X7~X6+L6+Y6, X8~X7+L7+Y7)

tf.mod <- list(~Y7+L7, ~Y8+L8)

blip.mod <- list(~1, ~1).

Estimation results are discarded when improper solutions because of out-of-range pa-
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rameter estimates (e.g., negative variance or the singular Hessian matrix for trait factors)

occur when applying either TS-SNMMs or RI-CLPM. The simulation was conducted in R

using the package lavaan (Rosseel, 2012) to estimate parameters with MLE in RI-CLPM

and in measurement models for the first step of TS-SNMMs. The package DTRreg was

used in the second step of TS-SNMMs. The simulation code is available in the Online

Supplemental Material.

4.1.2 Results

Figure 2 shows averages of estimated CDEs from the TS-SNMMs (with an AR(1) measure-

ment model for WPVS in the first step) and RI-CLPM. The dashed lines represent the true

values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and

the deviation from these lines indicates the bias. Because similar tendencies were observed,

we provide results for the effects of X∗ on Y ∗ (the sizes of the first-order CDE from X∗
T−1

and the second-order CDE from X∗
T−2 are 0.20 and 0.10, respectively), and those of Y ∗ on

X∗ are provided in the Online Supplemental Material (Figures S10-S11). Also, the impacts

of N and rW were not relatively large in terms of biases, especially in the second-order

CDE estimates, which exhibited a larger variability than the first-order CDE estimates

(see Table S1 of the ANOVA results, where calculated biases are set as outcomes). Here,

we provide results from N = 1000 and rW = 0.3, and we confirm that whole conclusions

are not influenced by differences in N and rW (Figures S2-S5).

Since the data were generated by the process assumed in RI-CLPM, RI-CLPM can

accurately estimate the parameters. However, since improper solutions often arise, espe-

cially when N is small or ϕ2 = 0.1 (i.e., small true stable trait variances cause negative

estimates), small (negative) biases occur in RI-CLPM as a result of discarding estimates

with improper solutions. The magnitudes of RMSEs were similar between TS-SNMMs and

RI-CLPM (Figures S1,S6-S9), so we will focus particularly on the results of biases below.

TS-SNMMs show biases in some conditions because of the misspecified measurement
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model in the first step. However, these biases become smaller as T becomes larger and ϕ2

becomes smaller. When T is as small as T = 3, TS-SNMMs show large biases in many

conditions (e.g., the relative biases over true CDEs exceed 10%), so even though TS-SNMMs

can be used in T = 3 for some conditions, such as ϕ2 = 0.1, it is generally advisable not

to do so. On the other hand, when T ≥ 4, biases were within 10% of the relative biases

over true effects in most conditions, the exceptions being when trait factor correlations

were small and the proportions of variances explained by within-person fluctuations (i.e.,

WPVS) were kept small over time (i.e., large ϕ2 = 0.4, 0.7 and small rB = 0.1 and ω = 1).

The overall results become more accurate when T ≥ 6.

When an AR(2) measurement model was used in TS-SNMMs for T = 4, the positive

biases observed in some conditions were mitigated, but the overall differences were almost

ignorable (see Figures S12-S13 in the Online Supplemental Material). The same tendencies

were observed when either AR(2) or AR(3) measurement models were used in T ≥ 6.

Therefore, the choice of AR order in the measurement model does not have a large impact

on biases, at least in the current parameters setting.

Table 1 provides the proportions of improper solutions calculated when a total of 200

proper solutions were obtained in each condition. It shows that improper solutions very

often arise in RI-CLPM, especially when ϕ2 is small, but also that the sizes of both N

and T have large impacts. RI-CLPM produces improper solutions more frequently than

TS-SNMMs in all conditions. This difference results from the fact that TS-SNMMs predict

WPVS from the measurement model of each variable, while RI-CLPM estimates structural

models and measurement models for all variables simultaneously. With the exception of

ϕ2 = 0.1, improper solutions arise in less than 1% of the simulations in TS-SNMMs when

T ≥ 4. When T = 4, 6 and ϕ2=0.1, improper solutions arise in more than 15% in all

conditions, even if N becomes larger in RI-CLPM. In cases of small N , the risk of improper

solutions in RI-CLPM becomes an issue if either T is small (T ≤ 4) or ϕ2 is small (ϕ2=0.1).
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4.2 Scenario 2: Unobserved confounders that influence observed

time-varying confounders and outcomes

4.2.1 Method

We consider the DGP in which an unobserved time-varying confounder U∗ influences both

the observed time-varying confounders L∗ and the outcomes Y ∗. In this scenario, controlling

for L∗ (as a collider) to infer the causal effects of X∗ on Y ∗ introduces bias through U∗ on

the path from X∗ to Y ∗ (i.e., X∗
T−2 ← Y ∗

T−3 ← U∗
T−4 → U∗

T−3 → U∗
T−2 → U∗

T−1 → Y ∗
T ).

This is known as collider bias, and this DGP is in line with the one typically assumed

in the epidemiological literature on MSMs and SNMMs (e.g., Robins & Hernán, 2009;

Vansteelandt & Joffe, 2014). Such a DGP might be assumed when researchers perform a

sequential randomized trial and the treatment model can be correctly specified (i.e., one

is sure how the treatments/predictors X∗ can be explained by other observed variables,

but the outcomes Y ∗ and the observed confounders L∗ may be influenced by unobserved

confounders U∗).

For this DGP, the AR(1) process is assumed in the model for U∗ as U∗
it = 0.7U∗

i(t−1)+duit,

and the variance of the residual duit is manipulated according to ω like other variables. Y ∗

and L∗ are then generated as

Y ∗
it = 0.30Y ∗

i(t−1) + 0.20X∗
i(t−1) + 0.20L∗

i(t−1) + 0.30U∗
i(t−1) + dyit

L∗
it = 0.20Y ∗

i(t−1) + 0.20X∗
i(t−1) + 0.30L∗

i(t−1) + 0.30U∗
i(t−1) + dlit, (36)

while X∗ is generated as in the previous simulation. Both the treatment model A and

the treatment-free model B were specified as in the previous simulation, and we compared

the estimation performances of TS-SNMMs and RI-CLPM that ignored U∗. Namely, in

TS-SNMMs B is misspecified in inferring effects from X∗ on Y ∗, whereas A is still correctly

specified. Thus, TS-SNMMs can receive doubly robust property.
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4.2.2 Results

Figure 3 shows the averages of estimated CDEs of X∗ on Y ∗ in TS-SNMMs (that assume

an AR(1) measurement model for WPVS in the first step) and RI-CLPM. Because the

impacts of N and rW on the results were again smaller in terms of biases, we provide the

results for N = 1000 and rW = 0.3. We also confirm again that the choice of AR order

in the measurement model does not have a large impact on biases in TS-SNMMs (Figure

S14). From Figure 3, we can see that TS-SNMMs show a similar amount of biases in each

condition to those in the previous simulation. Namely, with the exception of the specific

conditions shown above (large ϕ2 = 0.4, 0.7 and small rB = 0.1 and ω = 1), the biases were

small in T = 4, and the overall results become more accurate as T became larger.

On the other hand, notable positive biases were observed in RI-CLPM for the second-

order CDE of X∗. With the exception of the conditions specified above, the biases became

larger in RI-CLPM than those in TS-SNMMs in T ≥ 6, and RI-CLPM exhibited more

than a 10% level of relative biases over the true CDE in all conditions. This demonstrates

that estimates from RI-CLPM can be seriously biased by unobserved confounders (that

influences both observed confounders and outcomes), while TS-SNMMs are robust to this

influence.

These methods are also competitive in estimates for the second-order CDEs of opposite

relation (Y ∗ onX∗), but they commonly show small amounts of biases (Figure S15) because

in TS-SNMMs both A and B are misspecified in the current DGP. More specifically, the

model for Y ∗
T−2 is influenced by the previous U∗, and so too is X∗

T via the causal path

Y ∗
T−2 ← U∗

T−3 → U∗
T−2 → L∗

T−1 → X∗
T . Therefore, in the current DGP, TS-SNMMs can

more accurately estimate the (second-order) CDEs of X∗ on Y ∗ than RI-CLPM, but not

the (second-order) CDEs of Y ∗ on X∗.

As shown in Table S2, similar tendencies were observed for the frequency of improper

solutions as in the previous simulation. RI-CLPM very often produces improper solutions:
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at least 30% of all cases when ϕ2 is as small as 0.1. Even for larger ϕ2, when T and N

are as small as T = 4, 6 and N = 200, the observed proportions were around 10%. On the

other hand, the risk of obtaining improper solutions in TS-SNMMs was much smaller than

RI-CLPM.

One might consider that when such unobserved confounders exist, one can avoid refer-

ring to such biased estimation results from RI-CLPM by diagnosing some model fit indices.

However, in the current scenario, 98.06% of the estimation results from RI-CLPM showed

an SRMR lower than .05. Likewise, 99.97% and 97.23% of the results from RI-CLPM

showed a CFI larger than .95 and an RMSEA lower than .05, respectively (see Table S3).

These proportions exceeded 70–80% on average, even when T and N were small. Therefore,

it would be very difficult to detect collider biases caused by U∗ through these model fit

indices alone.

4.3 Scenario 3: Ignored direct higher-order effects of observed

time-varying confounders on outcomes

4.3.1 Method

In this scenario, we assume that there are ignored direct higher-order effects of L∗ on Y ∗.

Although a first-order lagged effect is often assumed when applying the (RI-)CLPM, an

ignored (direct) higher-order effect leads to biased causal estimates unless it is zero, and

assessing the number of order is a major task in inferring within-person relations. However,

as the numbers of time points and observed time-varying confounders increase, this task

becomes more complex, and the risk of misspecifications can increase.

In this scenario, Y ∗ is generated as

Y ∗
it = 0.30Y ∗

i(t−1) + 0.20X∗
i(t−1) + 0.20L∗

i(t−1) + 0.20L∗
i(t−2) + dyit, (37)

while X∗ and L∗ are generated similarly as in the first simulation. Because L∗
i(T−2) influ-
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ences both X∗
i(T−1) and Y ∗

iT , it is obviously a confounder in evaluating the relation between

X∗
(T−1) and Y ∗

T , and we expect ignoring L∗
i(T−2) in structural models for Y ∗

T leads to biased

causal estimates in RI-CLPM. Both the A and B models were specified as in the first

simulation, and we compared the estimation results between TS-SNMMs and RI-CLPM

that did not include L∗
i(t−2). Namely, B was misspecified, but A was still correctly specified

when estimating the effects of X∗ on Y ∗ in TS-SNMMs.

4.3.2 Results

Figure 4 shows the averages of estimated CDEs of X∗ on Y ∗ in TS-SNMMs (that assume an

AR(1) measurement model for WPVS in the first step) and RI-CLPM. Since the impacts

of N and rW on the results were again smaller in terms of biases, we provide here the

results when N = 1000 and rW = 0.3. We also confirmed again that the choice of AR

order in the measurement model does not have a large impact on biases in TS-SNMMs

(Figure S16). From Figure 4, we can see that TS-SNMMs show a similar amount of biases

in each condition as the first simulation (i.e., Figure 2). Therefore, with the exception of

the conditions mentioned above, the biases were small in T ≥ 4, but the overall results

became more accurate when T ≥ 6.

Notably, both the first- and second-order effects have large positive biases (that exceed a

10% level of relative biases over true CDEs) in RI-CLPM, and the amounts of biases in RI-

CLPM exceed those in TS-SNMMs in most conditions when T ≥ 4. This clearly indicates

that causal estimates from RI-CLPM can be seriously biased by model misspecification in

the form of omitted direct higher-order lagged effects of L∗ in the structural models, even

if there are no unobserved confounders U∗ in the DGP. On the other hand, estimates for

the opposite relation (Y ∗ on X∗) were similar to those in Figure 2 for both methods due

to there being no ignored direct higher-order effects in the structural model of X∗ (Figure

S17).

As shown in Table S4, similar tendencies were observed for the frequency of improper
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solutions as in the previous simulations. RI-CLPM often produces improper solutions when

ϕ2 is as small as 0.1. Even for larger ϕ2, when T and N are small as T = 4 and N = 200,

the observed proportions were more than 10%.

Like the previous simulation, we evaluated how model fit indices work to avoid referring

to estimation results from RI-CLPM. However, 94.63% of the estimation results from RI-

CLPM (that ignore direct second-order lagged effects) showed an SRMR lower than .05.

Likewise, 99.09% and 87.06% showed a CFI larger than .95 and an RMSEA lower than .05,

respectively (see Table S5). These proportions exceeded 30–50% on average, even when

T and N were small. Therefore, it seems very difficult to detect estimation biases caused

by misspecification in the form of omitted direct higher-order lagged effects of L∗ in the

structural model by using these model fit indices.

We have demonstrated that TS-SNMMs can be effectively used in many conditions

where longitudinal data with T ≥ 4 are available, and that more accurate causal estimates

can be obtained under some situations even if unobserved time-varying confounders and

model misspecifications exist, with a lower risk of obtaining improper solutions compared

with RI-CLPM.

5 EMPIRICAL APPLICATION

In this section, we describe an empirical application of TS-SNMMs using data from the

Tokyo Teen Cohort (TTC) study (Ando et al., 2019), which was also used in Usami (2023)

with T = 3 waves. We assume a similar causal DAG model to that in Figure 1. Namely,

we assume that measurements are expressed by the linear sum of stable trait factors and

WPVS. TTC is a longitudinal cohort study for investigating the psychological and physical

development of (N=3,171) adolescents in the Tokyo metropolitan area, and data for which

have been gathered in T = 4 waves: from 2012 to 2015 (age 10), from 2014 to 2017 (age

12), from 2017 to 2019 (age 14), and from 2020 to 2022 (age 16).
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The focus of this analysis is on the reciprocal relations between sleep duration (X∗)

and depressive symptoms (Y ∗), and we estimate the effects that past sleep duration (X∗)

at ages 10, 12, and 14 has on later depressive symptoms (Y ∗) at age 16 (measured by the

Short Mood and Feelings Questionnaire; SMFQ, Angold et al., 1995), and vice versa, based

on the T = 4 waves. Several epidemiological studies have suggested a relationship between

sleep habits (sleep duration, bedtime, and bedtime regularity) and mental health status

(depression and anxiety) in adolescents, and their reciprocal relations were investigated

by Matamura et al. (2014). However, this study did not account for unit effects (i.e.

stable traits) in sleep duration and depressive symptoms, and the relation at the within-

person level was also not investigated. In inferring the effects of sleep duration on depressive

symptoms, the statistical control of other sleep habits like bedtime may be key. However, as

illustrated in the previous simulation, controlling for observed confounders L∗ can introduce

collider bias via unobserved confounders U∗ that influence both L∗ and the outcome Y ∗.

In this example, as U∗, some life habits and the home environment (e.g., discipline from

parents, engagement in clubs/extracurricular activities in school) might affect the level of

depressive symptoms and bedtime. Therefore, the use of TS-SNMMs can be considered

a reasonable way to robustly estimate the CDEs and a joint effect of sleep duration over

time.

The SMFQ consists of 13 items that assess depressive symptoms (0: not true, 1: some-

times true, 2: true) related to feelings and actions over the preceding two weeks. Higher

SMFQ scores suggest more severe symptoms. Sleep duration in hours was measured by

the question “How long do you usually sleep on weekdays?” Bedtime was used as observed

confounders (L∗), which was measured by the question “When do you usually go to bed on

weekdays?” In the present example, we focus on N = 1, 294 adolescents who consistently

responded to these items during four waves. Descriptive statistics of these variables are

available in Table S6.

In the first step, we estimated the measurement model that assumes an AR(1) structure
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with time-varying autoregressive coefficients and residual variances in WPVS by MLE, and

WPVS were predicted for each variable. In the second step, we used the predicted WPVS

to estimate the CDEs of sleep duration at ages 10, 12, and 14 on depressive symptoms at

age 16 (i.e., CDEs of X∗
1 , X

∗
2 , X

∗
3 on Y ∗

4 ), and vice versa (i.e., CDEs of Y ∗
1 , Y

∗
2 , Y

∗
3 on X∗

4 ).

Models A and B were both specified based on first-order linear regression models (see the

specifications in the package DTRreg shown in Subsection 3.3). For the blip model, we

specified one that assumes interaction effects between predictors and observed confounders

measured at the same time point t (e.g., X∗
3L

∗
3 and X∗

3Y
∗
3 on Y ∗

4 ). For comparison, we also

applied RI-CLPM assuming AR(1) regressions that include L∗ (i.e., Equation (2), ignoring

interaction effects).

We confirmed that the first step did not produce improper solutions for each variable,

and that the specified AR(1) measurement model shows good fit in terms of the model fit

indices. Table S7 summarizes the model fit indices for each variable. Proportions of the

variances in measurements attributable to estimated stable trait factors at an initial time

(like the ϕ2 manipulated in the previous simulations) were calculated as 24.3%, 18.0%, and

27.2% for depressive symptoms, sleep duration, and bedtime, respectively. The ratio of

variance in WPVS at time t = 4 to that at time t = 1 (ω) was 2.30, 1.45, and 2.22 for

depressive symptoms, sleep duration, and bedtime, respectively. The amounts of biases in

TS-SNMMs were pragmatically small in the previous simulations under the conditions for

the calculated ϕ2 and ω.

Table 2 gives the estimated CDEs for reciprocal relations in TS-SNMMs and RI-CLPM,

respectively. Bootstrap was used in RI-CLPM to estimate standard errors.

As seen in Table 2, TS-SNMMs reveal that sleep duration at age 14 (X∗
3 ) shows a

statistically significant effect for decreasing later depressive symptoms at age 16 (Y ∗
4 ) at

the within-person level (β̂∗
y3 = −0.305, 95%CI [-0.595, -0.016], p <.05: 1 hour longer sleep

for a person at age 14 decreases the SMFQ score of this person by 0.305 points at age

16), while the main effects for age 12 (X∗
2 ) and 10 (X∗

1 ) do not. A statistically significant
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interaction effect between sleep duration and depressive symptoms at age 12 (X∗
2Y

∗
2 ) was

observed (γ̂∗
y2 = −0.173, 95%CI [-0.331, -0.016], p <.05: adolescents with higher depressive

symptoms at age 12 take larger effects on [decrease of] depressive symptoms at age 16 from

having more sleep), while such interaction effects were not observed at age 14 (X∗
3Y

∗
3 ).

In the opposite relation, depressive symptoms at age 12 (Y ∗
2 ) show a small, but statis-

tically significant, main effect at increasing sleep durations at age 16 (X∗
4 ) (β̂∗

x2 = 0.018

[60× 0.018=1.08min increase], 95%CI [0.003, 0.032], p <.05), while the main effects from

ages 14 (Y ∗
3 ) and 10 (Y ∗

1 ) do not. On the whole, the results were unchanged when using

AR(2) measurement models for each variable in the first step of TS-SNMMs (Table S8).

Similar positive effects of sleep duration on later depressive symptoms were found in a

previous study (Matamura et al., 2014). Usami (2023), which mainly focused on a clinical

group comprising N = 416 adolescents with SMFQ scores of 6 or higher during the study,

also demonstrated that increased sleep duration has positive effects on later depressive

symptoms.

RI-CLPM produced similar results to those from TS-SNMMs in that the effects of sleep

duration at ages 12 (X∗
2 ) and 10 (X∗

1 ) were not significant, but sleep duration at age 14

(X∗
3 ) showed a significant effect for decreasing later depressive symptoms (β̂yx4 = −0.901,

95%CI [-1.533, -0.282], p <.05). Compared with TS-SNMMs, (absolute value of) point

estimate is larger and indicates that a longer sleep duration has a more positive effect on

later depressive symptoms. On the other hand, depressive symptoms did not exhibit any

statistically significant effects on later sleep duration. The TTC study is now gathering

new data for a fifth wave, and further investigations with larger T are desired.

As illustrated in this example, the statistical significance, sign, and magnitude of esti-

mates of CDEs might change depending on the choice of modeling and estimation approach

(i.e., RI-CLPM and TS-SNMMs). TS-SNMMs that can flexibly and robustly estimate pa-

rameters can be considered as potential alternatives of RI-CLPM (and its variants), and

comparing estimation results between these approaches as a sensitivity analysis should be
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useful.

6 DISCUSSION

In this paper, we provided a tutorial, simulation, and illustrative example of TS-SNMMs

to infer within-person (reciprocal) relations. This method assumes a DGP similar to RI-

CLPM, but we have shown through our simulations and the illustrative example that

TS-SNMMs have several advantages over RI-CLPM: (i) the flexible inclusion of curvilinear

(e.g., quadratic) and interaction effects of WPVS as latent variables, (ii) more accurate

estimates of causal parameters can be obtained under certain conditions due to them being

doubly robust, even if unobserved time-varying confounders and model misspecifications

exist, (iii) no models for (the distributions of) observed time-varying confounders are needed

for estimation, and (iv) the risk of obtaining improper solutions can be decreased. We

showed in simulations that TS-SNMMs work well in many conditions if longitudinal data

with T ≥ 4 are available, and more accurate estimates can be obtained if T becomes larger.

In psychology and related disciplines, the use of RI-CLPM has rapidly increased over the

past decade. Although researchers often wish to look at within-person (reciprocal) relations

from the perspective of causal inference, there are potential limitations in traditional SEM-

based approaches like RI-CLPM when it comes to accounting for time-varying confounders

(which relate to the ability to flexibly and robustly estimate causal parameters), and the

risk of obtaining improper solutions can present a challenge, especially when the sample

size is small. TS-SNMMs can be used as an alternative over RI-CLPM (and its variants),

especially when data with T ≥ 4 are available and when improper solutions occur in

RI-CLPM. However, the purpose of this paper is not to completely denounce the use of RI-

CLPM. Comparing estimation results between these methods can be useful as a sensitivity

analysis, especially when either T is small or researchers are concerned with the presence

of unobserved time-varying confounders and model misspecifications.
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However, TS-SNMMs are also prone to possible pitfalls that practitioners should be

aware of. The number of time points T is an especially critical aspect. Most research aimed

at inferring reciprocal (within-person) relations has used longitudinal data with T = 2, 3

(e.g., Usami, Todo et al., 2019), and imprecise predictions of WPVS can seriously degrade

the estimation performance in TS-SNMMs. All that said, in this case, the risk of producing

seriously biased estimates can increase even in RI-CLPM if model misspecifications exist.

In this paper, we assumed that each variable is a continuous. In principle, SNMMs can

handle both continuous or non-continuous treatment/predictors. However, in TS-SNMMs,

which aim to infer within-person relationships, there are currently several challenges re-

garding the handling of non-continuous variables. One such challenge is the lack of suf-

ficient investigation about prediction methods for WPVS in the first step when dealing

with non-continuous variables. Additionally, currently there are limitations in software

implementation, such as the inability of the package DTRreg to handle non-continuous

outcomes. On the other hand, in RI-CLPM as CSA, weighted-least squares (WLS) and

adjusted test statistics for ordinal categorical data are widely used.

Differences can also be observed between TS-SNMM and RI-CLPM in terms of han-

dling missing data. Specifically, for example, in the package DTRreg, listwise deletion is

performed when there are missing values. Therefore, in TS-SNMMs, especially when data

are MAR, an estimation combined with multiple imputation is desired (e.g., Loh & Ren,

2023a). On the other hand, in RI-CLPM, one advantage is the direct execution of missing

data handling and parameter estimation using FIML under the assumption of multivariate

normality of the data (e.g., Mulder & Usami et al., 2024).

In applying SNMMs researchers should carefully consider the order of lags for variables

in treatment and treatment-free (or, outcome) models according to the assumed DAG, and

it might be advisable to include both lag one and lag two effects, and possibly longer lags to

permit the possibility of more complex relations (e.g., Loh and Rens, 2023a). correct spec-

ification of the measurement model in the first step can also be challenging. Fortunately,
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both current simulations and Usami (2023) have shown that even (misspecified) models

with a time-varying AR(1) structure for WPVS produce accurate estimates, and that the

choice of order has little influence on estimation performance. However, further investiga-

tions of estimation performance that account for various misspecifications in measurement

models are still required, and comparisons with other recent estimation approaches (e.g.,

Du & Bentler, 2021; Du, Bentler & Rosseel, 2022) for parameters in measurement models,

especially for data with non-normal or small N , will also be an important topic for future

studies.

Another important but still unresolved issue is how to establish the correct (or even

a plausible) DAG model, or how one can validate the incorporation of time-invariant fac-

tors, such as stable trait factors, to infer within-person relations. To identify the causal

parameters, we assumed that measurements are expressed by the linear sum of stable trait

factor scores and WPVS, as in RI-CLPM. Usami, Murayama et al. (2019) explained that

there are two primary ways to statistically control for time-invariant factors as individual

differences: using stable trait factors included in RI-CLPM that have only direct effects on

measurements and are uncorrelated with within-person processes (i.e., WPVS), and using

the accumulating factors included in several other statistical models (e.g., Bollen & Brand,

2010), which have both direct and indirect effects on measurements. In these models, accu-

mulating factors are modeled with lagged regressions rather than being modeled separately

from them (see Usami, 2023 for further details and the corresponding DGP).

The discussion of issues surrounding the appropriate model choice and the potential

difference of inferential results among statistical models when inferring within-person re-

lations is ongoing, and it continues to gather attention from quantitative researchers in

psychology (e.g., Andersen, 2022; Hamaker, 2023; Lucas, 2022; Lüdtke & Robitzsch, 2021;

Muthén & Asparouhov, in press; Murayama & Gfrörer, 2024; Usami, 2022,2023). Though

our attention in this paper was on TS-SNMMs that assume stable traits factors in DGP,

if an uncorrelated assumption of between- and within-person processes is violated, then
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both RI-CLPM and TS-SNMMs can produce seriously biased estimates. One can resort to

substantial theory to choose the model (e.g., Shehata et al., 2021; who argued that some

statistical models that include stable trait factors, such as a constrained version of RI-

CLPM, are well suited to model between- and within-person components when capturing

maintenance effects in communication research). However, in many cases, researchers do

not exactly know the true DGP and how time-invariant factors (if they exist) influence mea-

surements (e.g., linearly or nonlinearly, directly or indirectly, or both), and unambiguous

specification of the theoretically derived expected relations for variables is quite challenging

in practical applications (e.g., Curran & Bauer, 2011; Usami, 2023). Further discussion

accounting for the sensitivity of results through empirical analyses will be required in the

future (Usami, 2023). The extensions of TS-SNMMs that account for accumulating fac-

tors (i.e., correlated within-person and between-person processes) and measurement errors,

along with developing a package to further increase the feasibility of TS-SNMMs, are also

important future research goals.
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Table 1. Proportion of improper solutions in each condition. 
  T = 3 T = 4 T = 6 T = 9 

    RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs 

𝜑𝜑2=0.1 N=200 86.53% 19.24% 76.82% 5.63% 58.00% 0.62% 37.15% 0.03% 
 N=600 74.45% 2.92% 55.45% 0.18% 28.27% 0.00% 10.11% 0.00% 
 N=1000 65.32% 0.66% 42.34% 0.00% 16.87% 0.00% 3.78% 0.00% 

𝜑𝜑2=0.4 N=200 39.52% 1.39% 15.31% 0.01% 2.50% 0.00% 0.24% 0.00% 
 N=600 11.92% 0.00% 1.61% 0.00% 0.06% 0.00% 0.00% 0.00% 
 N=1000 5.67% 0.00% 0.45% 0.00% 0.00% 0.00% 0.00% 0.00% 

𝜑𝜑2=0.7 N=200 26.01% 5.44% 7.46% 0.69% 0.63% 0.00% 0.04% 0.00% 
 N=600 2.23% 0.09% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 

  N=1000 0.51% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 
𝜑𝜑2, (proportion of) stable trait factor variances at t=1; T, the number of time points; N, sample size; RI-CLPM, random 
intercept cross-lagged panel model; TS-SNMMs, two step estimation approach with structural nested mean model. 
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Table 2. Estimated controlled direct effects for reciprocal relations in TS-SNMMs and RI-CLPM 
   TS-SNMMs   RI-CLPM 

              Sleep→SMFQ                      Estimate     SE          Estimate      SE 
Sleep 3 → SMFQ 4 -0.305 0.148  -0.901 0.321 
(Sleep 3 × Bedtime 3) → SMFQ 4 0.057 0.092    

(Sleep 3 × SMFQ 3) → SMFQ 4 -0.030 0.070    

Sleep 2 → SMFQ 4 -0.289 0.249  -0.255 0.157 
(Sleep 2 × Bedtime 2) → SMFQ 4 -0.601 0.629    

(Sleep 2 × SMFQ 2) → SMFQ 4 -0.173 0.080    

Sleep 1 → SMFQ 4 0.300 0.514  -0.071 0.059 
(Sleep 1 × Bedtime 1) → SMFQ 4 0.178 1.324    

(Sleep 1 × SMFQ 1) → SMFQ 4 0.104 0.095    

              SMFQ→Sleep                      Estimate     SE          Estimate      SE 
SMFQ 3 → Sleep 4 0.000 0.007  0.001 0.008 
(SMFQ 3 × Bedtime 3) → Sleep 4 0.017 0.017    

(SMFQ 3 × Sleep 3) → Sleep 4 0.010 0.018    

SMFQ 2 → Sleep 4 0.018 0.007  0.000 0.003 
(SMFQ 2 × Bedtime 2) → Sleep 4 -0.007 0.018    

(SMFQ 2 × Sleep 2) → Sleep 4 0.007 0.018    

SMFQ 1 → Sleep 4 0.009 0.007  0.002 0.001 
(SMFQ 1 × Bedtime 1) → Sleep 4 0.055 0.021    

(SMFQ 1 × Sleep 1) → Sleep 4 0.048 0.020       
Bold font indicates statistical significance. Sleep, sleep duration; SMFQ, Short Mood and Feelings Questionnaire; SE, 

standard error. 
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Figure 1. The linear causal diagrams (DAGs) for data-generating process in which stable trait 
factors are included. Solid single-headed arrows (directed edges) are labeled with path 
coefficients that quantify direct causal effects. A dashed double-headed arrow (bidirected edge) 
represents a correlation due to an unobserved common cause. Stable trait factors are represented 
in dashed circles, indicating that these are latent variables.  
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𝜑𝜑2, (proportion of) stable trait factor variances at t=1; T, the number of time points; 𝑟𝑟𝐵𝐵, correlation between stable 
trait factors; 𝜔𝜔, ratio of variance of within-person variability scores at t=T to that at t=1; The dashed lines represent 
the true values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and the deviation from 
these lines indicates the bias. RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation 
approach with structural nested mean model. 
 

Figure 2. Averages of estimated CDEs of X* on Y* in TS-SNMMs and the RI-CLPM. 
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𝜑𝜑2, (proportion of) stable trait factor variances at t=1; T, the number of time points; 𝑟𝑟𝐵𝐵, correlation between stable 
trait factors; 𝜔𝜔, ratio of variance of within-person variability scores at t=T to that at t=1; The dashed lines represent 
the true values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and the deviation from 
these lines indicates the bias. RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation 
approach with structural nested mean model. 
 
Figure 3. Averages of estimated CDEs of X* on Y* in TS-SNMMs and the RI-CLPM when there 
exist unobserved confounders U* that influence the observed time-varying confounders L* and 
the outcomes Y*. 
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𝜑𝜑2, (proportion of) stable trait factor variances at t=1; T, the number of time points; 𝑟𝑟𝐵𝐵, correlation between stable 
trait factors; 𝜔𝜔, ratio of variance of within-person variability scores at t=T to that at t=1; The dashed lines represent 
the true values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and the deviation from 
these lines indicates the bias. RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation 
approach with structural nested mean model. 
 
Figure 4. Averages of estimated CDEs of X* on Y* in TS-SNMMs and the RI-CLPM when there 
exist ignored direct higher-order effects of observed time-varying confounders L* on outcomes 
Y*. 
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Table S1. Results of ANOVA where calculated biases are set as outcomes. 
  First-order effect of X* on Y* Second-order effect of X* on Y* 
 df SS MS 𝜂𝜂2 SS MS 𝜂𝜂2 

T 3 0.01967 0.00656 0.046  0.2079 0.06931 0.098  

N 2 0.00096 0.00048 0.002  0.0197 0.00984 0.009  

    𝜑𝜑2 2 0.01969 0.00984 0.046  0.1288 0.06440 0.061  

   𝑟𝑟𝐵𝐵 2 0.10741 0.05370 0.248  0.4273 0.21363 0.202  

   𝑟𝑟𝑊𝑊 2 0.07047 0.03523 0.163  0.0904 0.04519 0.043  

ω 2 0.03781 0.01890 0.087  0.1694 0.08468 0.080  

T×N 6 0.00113 0.00019 0.003  0.0193 0.00322 0.009  

T×𝜑𝜑2 6 0.00039 0.00007 0.001  0.0969 0.01614 0.046  

N×𝜑𝜑2 4 0.00064 0.00016 0.001  0.0014 0.00036 0.001  

T×𝑟𝑟𝐵𝐵 6 0.01916 0.00319 0.044  0.2351 0.03919 0.111  

N×𝑟𝑟𝐵𝐵 4 0.00054 0.00014 0.001  0.0003 0.00008 0.000  

𝜑𝜑2×𝑟𝑟𝐵𝐵 4 0.02665 0.00666 0.062  0.1297 0.03242 0.061  

T×𝑟𝑟𝑊𝑊 6 0.01808 0.00301 0.042  0.0176 0.00294 0.008  

N×𝑟𝑟𝑊𝑊 4 0.00069 0.00017 0.002  0.0001 0.00002 0.000  

𝜑𝜑2×𝑟𝑟𝑊𝑊 4 0.00564 0.00141 0.013  0.0647 0.01619 0.031  

𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 4 0.00025 0.00006 0.001  0.0036 0.00090 0.002  

T×ω 6 0.00008 0.00001 0.000  0.1114 0.01856 0.053  

N×ω 4 0.00004 0.00001 0.000  0.0030 0.00076 0.001  

𝜑𝜑2×ω 4 0.01232 0.00308 0.029  0.0034 0.00084 0.002  

𝑟𝑟𝐵𝐵×ω 4 0.02303 0.00576 0.053  0.0003 0.00006 0.000  

𝑟𝑟𝑊𝑊×ω 4 0.00819 0.00205 0.019  0.0047 0.00119 0.002  

T×N×𝜑𝜑2 12 0.00202 0.00017 0.005  0.0103 0.00086 0.005  

T×N×𝑟𝑟𝐵𝐵 12 0.00081 0.00007 0.002  0.0006 0.00005 0.000  

T×𝜑𝜑2×𝑟𝑟𝐵𝐵 12 0.00730 0.00061 0.017  0.0966 0.00805 0.046  

N×𝜑𝜑2×𝑟𝑟𝐵𝐵 8 0.00024 0.00003 0.001  0.0006 0.00008 0.000  

T×N×𝑟𝑟𝑊𝑊 12 0.00091 0.00008 0.002  0.0010 0.00009 0.000  

T×𝜑𝜑2×𝑟𝑟𝑊𝑊 12 0.00360 0.00030 0.008  0.0652 0.00543 0.031  

N×𝜑𝜑2×𝑟𝑟𝑊𝑊 8 0.00027 0.00003 0.001  0.0006 0.00007 0.000  

T×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 12 0.00028 0.00002 0.001  0.0060 0.00050 0.003  

N×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 8 0.00048 0.00006 0.001  0.0007 0.00009 0.000  

𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 8 0.00047 0.00006 0.001  0.0014 0.00017 0.001  

T×N×ω 12 0.00080 0.00007 0.002  0.0103 0.00086 0.005  

T×𝜑𝜑2×ω 12 0.00068 0.00006 0.002  0.0109 0.00091 0.005  
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N×𝜑𝜑2×ω 8 0.00044 0.00006 0.001  0.0001 0.00012 0.000  

T×𝑟𝑟𝐵𝐵×ω 12 0.00400 0.00033 0.009  0.0391 0.00326 0.019  

N×𝑟𝑟𝐵𝐵×ω 8 0.00021 0.00003 0.000  0.0008 0.00010 0.000  

𝜑𝜑2×𝑟𝑟𝐵𝐵×ω 8 0.00561 0.00070 0.013  0.0012 0.00015 0.001  

T×𝑟𝑟𝑊𝑊×ω 12 0.00249 0.00021 0.006  0.0312 0.00260 0.015  

N×𝑟𝑟𝑊𝑊×ω 8 0.00033 0.00004 0.001  0.0006 0.00008 0.000  

𝜑𝜑2×𝑟𝑟𝑊𝑊×ω 8 0.00113 0.00014 0.003  0.0030 0.00038 0.001  

𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 8 0.00070 0.00009 0.002  0.0008 0.00009 0.000  

T×N×𝜑𝜑2×𝑟𝑟𝐵𝐵 24 0.00087 0.00004 0.002  0.0013 0.00005 0.001  

T×N×𝜑𝜑2×𝑟𝑟𝑊𝑊 24 0.00060 0.00002 0.001  0.0005 0.00002 0.000  

T×N×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 24 0.00059 0.00002 0.001  0.0031 0.00013 0.001  

T×𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 24 0.00101 0.00004 0.002  0.0025 0.00010 0.001  

N×𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 16 0.00069 0.00004 0.002  0.0010 0.00006 0.000  

T×N×𝜑𝜑2×ω 24 0.00321 0.00013 0.007  0.0069 0.00029 0.003  

T×N×𝑟𝑟𝐵𝐵×ω 24 0.00097 0.00004 0.002  0.0019 0.00008 0.001  

T×𝜑𝜑2×𝑟𝑟𝐵𝐵×ω 24 0.00157 0.00007 0.004  0.0158 0.00066 0.007  

N×𝜑𝜑2×𝑟𝑟𝐵𝐵×ω 16 0.00053 0.00003 0.001  0.0018 0.00011 0.001  

T×N×𝑟𝑟𝑊𝑊×ω 24 0.00088 0.00004 0.002  0.0020 0.00008 0.001  

T×𝜑𝜑2×𝑟𝑟𝑊𝑊×ω 24 0.00125 0.00005 0.003  0.0142 0.00059 0.007  

N×𝜑𝜑2×𝑟𝑟𝑊𝑊×ω 16 0.00053 0.00003 0.001  0.0008 0.00005 0.000  

T×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 24 0.00063 0.00003 0.001  0.0042 0.00018 0.002  

N×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 16 0.00072 0.00005 0.002  0.0028 0.00017 0.001  

𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 16 0.00063 0.00004 0.001  0.0005 0.00003 0.000  

T×N×𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊 48 0.00158 0.00003 0.004  0.0024 0.00005 0.001  

T×N×𝜑𝜑2×𝑟𝑟𝐵𝐵×ω 48 0.00210 0.00004 0.005  0.0066 0.00014 0.003  

T×N×𝜑𝜑2×𝑟𝑟𝑊𝑊×ω 48 0.00114 0.00002 0.003  0.0043 0.00009 0.002  

T×N×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 48 0.00196 0.00004 0.005  0.0065 0.00014 0.003  

T×𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 48 0.00135 0.00003 0.003  0.0031 0.00006 0.001  

N×𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 32 0.00111 0.00003 0.003  0.0027 0.00009 0.001  

T×N×𝜑𝜑2×𝑟𝑟𝐵𝐵×𝑟𝑟𝑊𝑊×ω 96 0.00273 0.00003 0.006  0.0103 0.00011 0.005  

Total 971 0.43226   2.1121    
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Table S2. Proportions of improper solutions in each condition (second simulation). 
  T = 3 T = 4 T = 6 T = 9 

    RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs 

𝜑𝜑2=0.1 N=200 85.59% 14.75% 76.63% 3.60% 65.26% 0.33% 55.52% 0.01% 
 N=600 72.79% 1.90% 57.13% 0.07% 44.93% 0.00% 39.11% 0.00% 
 N=1000 63.13% 0.40% 46.52% 0.00% 37.11% 0.00% 32.64% 0.00% 

𝜑𝜑2=0.4 N=200 43.33% 2.34% 23.14% 0.13% 9.49% 0.00% 2.59% 0.00% 
 N=600 13.26% 0.05% 4.52% 0.00% 0.96% 0.00% 0.02% 0.00% 
 N=1000 6.44% 0.00% 1.68% 0.00% 0.18% 0.00% 0.00% 0.00% 

𝜑𝜑2=0.7 N=200 31.89% 9.46% 13.93% 2.30% 3.50% 0.00% 0.42% 0.00% 
 N=600 5.67% 0.61% 0.56% 0.04% 0.00% 0.00% 0.00% 0.00% 

  N=1000 1.32% 0.07% 0.22% 0.02% 0.00% 0.00% 0.00% 0.00% 

RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation approach with a 

structural nested mean model. 
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Table S3. Proportions of observed values that exceeded prespecified criteria for model fit indices (second simulation). 
  T = 3 T = 4 T = 6 T = 9 

    
SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

𝜑𝜑2=0.1 N=200 100.00% 99.80% 80.24% 99.89% 99.74% 93.04% 98.07% 99.69% 99.41% 79.24% 99.72% 100.00% 
 N=600 100.00% 100.00% 94.11% 100.00% 100.00% 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
 N=1000 100.00% 100.00% 98.11% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

𝜑𝜑2=0.4 N=200 100.00% 99.98% 80.54% 99.81% 100.00% 93.67% 97.11% 100.00% 99.31% 78.65% 100.00% 100.00% 
 N=600 100.00% 100.00% 93.78% 100.00% 100.00% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
 N=1000 100.00% 100.00% 98.37% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

𝜑𝜑2=0.7 N=200 100.00% 100.00% 83.19% 99.85% 100.00% 94.20% 95.59% 100.00% 99.20% 81.81% 100.00% 100.00% 
 N=600 100.00% 100.00% 94.54% 100.00% 100.00% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

 N=1000 100.00% 100.00% 98.56% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

CFI, comparative fit index; RMSEA, root mean square error of approximation; SRMR, standardized root 

mean square residual. 
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Table S4. Proportions of improper solutions in each condition (third simulation). 
  T = 3 T = 4 T = 6 T = 9 

    RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs 

𝜑𝜑2=0.1 N=200 87.88% 17.05% 79.12% 3.57% 59.02% 0.18% 33.57% 0.01% 
 N=600 82.67% 2.62% 66.47% 0.07% 32.26% 0.00% 9.83% 0.00% 
 N=1000 80.42% 0.61% 60.35% 0.00% 25.02% 0.00% 5.42% 0.00% 

𝜑𝜑2=0.4 N=200 36.28% 2.15% 10.74% 0.04% 1.54% 0.00% 0.09% 0.00% 
 N=600 5.37% 0.00% 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 
 N=1000 1.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

𝜑𝜑2=0.7 N=200 26.26% 6.62% 11.61% 1.32% 2.94% 0.00% 0.52% 0.00% 
 N=600 3.62% 0.16% 0.69% 0.00% 0.00% 0.00% 0.00% 0.00% 

  N=1000 1.16% 0.04% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 

RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation approach with a 

structural nested mean model. 
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Table S5. Proportions of observed values that exceeded prespecified criteria for model fit indices (third simulation). 
  T = 3 T = 4 T = 6 T = 9 

    
SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

SRMR 

<.05 

CFI 

>.95 

RMSEA 

<.05 

𝜑𝜑2=0.1 N=200 99.98% 99.31% 60.00% 96.98% 96.94% 69.81% 87.06% 92.59% 86.20% 33.67% 81.33% 98.54% 
 N=600 100.00% 100.00% 52.24% 100.00% 99.94% 77.94% 100.00% 99.80% 98.74% 100.00% 99.76% 100.00% 
 N=1000 100.00% 100.00% 52.46% 100.00% 99.98% 80.15% 100.00% 100.00% 99.63% 100.00% 100.00% 100.00% 

𝜑𝜑2=0.4 N=200 100.00% 100.00% 67.35% 98.09% 99.78% 76.63% 87.89% 99.35% 88.48% 47.80% 98.56% 98.46% 
 N=600 100.00% 100.00% 66.37% 100.00% 100.00% 89.57% 100.00% 100.00% 99.65% 100.00% 100.00% 100.00% 
 N=1000 100.00% 100.00% 64.28% 100.00% 100.00% 93.26% 100.00% 100.00% 99.98% 100.00% 100.00% 100.00% 

𝜑𝜑2=0.7 N=200 100.00% 100.00% 75.41% 99.17% 100.00% 85.39% 88.26% 100.00% 92.83% 68.19% 100.00% 98.93% 
 N=600 100.00% 100.00% 81.04% 100.00% 100.00% 97.20% 99.80% 100.00% 99.89% 99.93% 100.00% 100.00% 

 N=1000 100.00% 100.00% 84.59% 100.00% 100.00% 99.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

CFI, comparative fit index; RMSEA, root mean square error of approximation; SRMR, standardized root 

mean square residual. 
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Table S6. Descriptive statistics. 
 

(a) Mean and standard deviation  

  BT10 SD10 SMFQ10 BT12 SD12 SMFQ12 BT14 SD14 SMFQ14 BT16 SD16 SMFQ16 

Mean 21.71  9.03  4.49  22.25  8.48  3.67  23.10  7.65  3.03  23.72  7.01  3.66  

Standard 
deviation 0.63  0.63  4.46  0.73  0.74  4.30  0.81  0.86  4.53  0.86  0.90  5.19  

(b) Variances, covariances, and correlations 

  BT10 SD10 SMFQ10 BT12 SD12 SMFQ12 BT14 SD14 SMFQ14 BT16 SD16 SMFQ16 

BT10 0.40  -0.75  0.11  0.64  -0.46  0.06  0.38  -0.28  0.09  0.24  -0.16  0.10  

SD10 -0.30  0.39  -0.04  -0.44  0.55  -0.04  -0.22  0.34  -0.05  -0.14  0.17  -0.06  

SMFQ10 0.30  -0.11  19.90  0.04  0.00  0.41  0.04  0.04  0.27  0.02  0.05  0.18  

BT12 0.29  -0.20  0.12  0.53  -0.77  0.07  0.48  -0.40  0.10  0.26  -0.19  0.12  

SD12 -0.21  0.25  0.02  -0.42  0.55  -0.06  -0.32  0.48  -0.08  -0.16  0.22  -0.11  

SMFQ12 0.16  -0.10  7.87  0.23  -0.19  18.51  0.05  0.00  0.36  0.02  0.06  0.29  

BT14 0.19  -0.11  0.16  0.28  -0.19  0.16  0.65  -0.67  0.14  0.47  -0.32  0.12  

SD14 -0.15  0.18  0.13  -0.25  0.30  0.00  -0.47  0.74  -0.08  -0.28  0.43  -0.12  

SMFQ14 0.26  -0.15  5.39  0.34  -0.27  7.12  0.53  -0.29  20.58  0.11  -0.02  0.44  

BT16 0.13  -0.08  0.09  0.16  -0.10  0.06  0.33  -0.20  0.42  0.75  -0.60  0.13  

SD16 -0.09  0.09  0.19  -0.12  0.15  0.21  -0.23  0.33  -0.06  -0.47  0.81  -0.07  

SMFQ16 0.32  -0.19  4.05  0.47  -0.42  6.38  0.49  -0.52  10.33  0.59  -0.31  26.92  
* BT, bedtime; SD, sleep duration; SMFQ, Short Mood and Feelings Questionnaire. 
Variances are in the diagonal elements, covariances are in the lower-left elements, and correlations are 
in the upper-right elements. 
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Table S7. Fit indices of the AR(1) measurement model for each variable. 
 Bedtime Sleep duration SMFQ 

No. of parameters 8 8 8 
df 2 2 2 

chi-square 2.507 7.325 7.788 
p-value 0.285 0.026 0.020 

CFI 1 0.995 0.992 
RMSEA 0.014 [0.000, 0.059] 0.045 [0.014, 0.083] 0.047 [0.016, 0.084] 
SRMR 0.011 0.018 0.018 

Model fits are perfect for the AR(2) measurement model. 
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Table S8. Estimated conditional direct effects from TS-SNMMs with AR(2) measurement models. 

  TS-SNMMs 

                              Sleep→SMFQ                         Estimates    SE 
Sleep 3 → SMFQ 4 -0.290  0.143  
Sleep 3 × Bedtime 3 → SMFQ 4 0.033  0.094  
Sleep 3 × SMFQ 3 → SMFQ 4 -0.027  0.066  
Sleep 2 → SMFQ 4 -0.198  0.258  
Sleep 2 × Bedtime 2 → SMFQ 4 -0.655  0.620  
Sleep 2 × SMFQ 2 → SMFQ 4 -0.161  0.074  
Sleep 1 → SMFQ 4 0.382  0.501  
Sleep 1 × Bedtime 1 → SMFQ 4 0.223  1.260  
Sleep 1 × SMFQ 1 → SMFQ 4 0.101  0.091  

                              SMFQ→Sleep                         Estimates    SE 
SMFQ 3 → Sleep 4 -0.003  0.007  
SMFQ 3 × Bedtime 3 → Sleep 4 0.016  0.015  
SMFQ 3 × Sleep 3 → Sleep 4 0.008  0.015  
SMFQ 2 → Sleep 4 0.015  0.007  
SMFQ 2 × Bedtime 2 → Sleep 4 -0.009  0.017  
SMFQ 2 × Sleep 2 → Sleep 4 0.003  0.016  
SMFQ 1 → Sleep 4 0.004  0.007  
SMFQ 1 × Bedtime 1 → Sleep 4 0.050  0.022  
SMFQ 1 × Sleep 1 → Sleep 4 0.043  0.020  

Bold font indicates statistical significance. 
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Figure S1. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 

(N=1000 and 𝑟𝑟𝑊𝑊= 0.3) 
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Figure S2. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 
(N=200 and 𝑟𝑟𝑊𝑊= 0.3) 
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Figure S3. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 
(N=600 and 𝑟𝑟𝑊𝑊= 0.3) 

 



14 
 

 

Figure S4. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 
(N=1000 and 𝑟𝑟𝑊𝑊= 0.1) 
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Figure S5. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 

(N=1000 and 𝑟𝑟𝑊𝑊= 0.5) 
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Figure S6. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 
(N=200 and 𝑟𝑟𝑊𝑊= 0.3) 



17 
 

 
Figure S7. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 

(N=600 and 𝑟𝑟𝑊𝑊= 0.3) 
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Figure S8. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 

(N=1000 and 𝑟𝑟𝑊𝑊= 0.1) 



19 
 

 
Figure S9. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 

(N=1000 and 𝑟𝑟𝑊𝑊= 0.5) 
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Figure S10. Averages of estimated CDEs of Y* on X* in TS-SNMMs and RI-CLPM. 
(N=1000 and 𝑟𝑟𝑊𝑊= 0.3) 
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Figure S11. RMSEs of estimated CDEs of Y* on X* in TS-SNMMs and RI-CLPM. 

(N=1000 and 𝑟𝑟𝑊𝑊= 0.3) 
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Figure S12. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 

(AR(2) measurement model; N=1000 and 𝑟𝑟𝑊𝑊= 0.3) 
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Figure S13. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM. 

(AR(2) measurement model; N=1000 and 𝑟𝑟𝑊𝑊= 0.3) 
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Figure S14. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM when there 
exist unobserved confounders U* that influence observed time-varying confounders L* and 
outcomes Y* (AR(2) measurement model; N=1000 and 𝑟𝑟𝑊𝑊= 0.3). 
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Figure S15. Averages of estimated CDEs of Y* on X* in TS-SNMMs and RI-CLPM when there 
exist unobserved confounders U* that influence observed time-varying confounders L* and 
outcomes Y* (N=1000 and 𝑟𝑟𝑊𝑊= 0.3). 
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Figure S16. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM when there 
exist ignored direct higher-order effects of observed time-varying confounders L* on outcomes 
Y* (AR(2) measurement model; N=1000 and 𝑟𝑟𝑊𝑊= 0.3). 
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Figure S17. Averages of estimated CDEs of Y* on X* in TS-SNMMs and RI-CLPM when there 
exist ignored direct higher-order effects of observed time-varying confounders L* on outcomes 
Y* (N=1000 and 𝑟𝑟𝑊𝑊= 0.3). 
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