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Abstract

Psychological researchers have shown an interest in disaggregating within-person
variability from between-person differences. Especially for inferring reciprocal rela-
tions among variables at the within-person level, applications of the random-intercept
cross-lagged panel model (RI-CLPM) with stable trait factors has increased rapidly.
This paper provides a tutorial, simulation, and illustrative example of another recent
approach proposed by Usami (2023). This approach consists of a two-step procedure:
within-person variability scores (WPVS) for each person, which are disaggregated
from the stable traits of that person, are predicted using structural equation mod-
eling, and causal parameters are then estimated via a potential outcome approach,
such as by using structural nested mean models (SNMMs). This method assumes
a data-generating process similar to that in RI-CLPM, and has several advantages:
(i) the flexible inclusion of curvilinear and interaction effects for WPVS as latent
variables in treatment and outcome models, (ii) more accurate estimates of causal
parameters for reciprocal relations can be obtained under certain conditions owing to
them being doubly robust, even if unobserved time-varying confounders and model
misspecifications exist, (iii) no models for (the distributions of ) observed time-varying
confounders are needed for estimation, and (iv) the risk of obtaining improper so-
lutions is reduced. After explaining the data-generating process and the analysis
procedure using the R package DTRreg for SNMMs, estimation performances are
compared with RI-CLPM through large-scale simulations. We show that the pro-
posed approach works well in many conditions if longitudinal data with T" > 4 are
available, and that the accuracy increases as T' becomes larger. An analytic example
using data regarding sleep habits and mental health statuses from the Tokyo Teen
Cohort (TTC) study is also provided.

Keywords: within-person relation, longitudinal data, structural equation modeling, struc-
tural nested mean model, causal inference



1 INTRODUCTION

When analyzing relations among variables in data, psychological researchers differentiate
between within-group (unit-level) relations and between-group (group-level) relations, and
between within-person relations and between-person relations. Particularly in longitudinal
design, researchers have shown an interest in inferring within-person relations: how changes
in one variable influence another for the same person. Within-person relations may exhibit
statistically different (or even opposite) tendencies from between-person relations, and this
is one reason that statistical inference for disaggregating within- and between-person rela-
tions has long been a concern in psychology. On the other hand, estimands that are defined
at the within-person level have been less common in the causal inference literature (Liidtke
& Robitzsch, 2021).

Multilevel modeling (Hoffman, 2014; Wang & Maxwell, 2015) and structural equation
modeling (SEM) (Hamaker, Kuiper, & Grasman, 2015) are two statistical methods that
have been popular for investigating within-person relations. The SEM approach might be
advantageous if researchers wish to (i) include common factors in measurement models
for multiple indicators, (ii) assume measurement errors for measurements with imperfect
reliability, (iii) treat multiple outcomes to evaluate reciprocal (or mutual) relations, or (iv)
use model fit indices to evaluate how the model implied mean and covariance structure can
reproduce the observed mean vector and covariance matrix. After the critique of applying
a cross-lagged panel model (CLPM) to infer reciprocal relations at the within-person level
(Hamaker et al., 2015), applications of random-intercept CLPM (RI-CLPM), which in-
cludes common factors called stable trait factors to control for between-person differences,
have been growing rapidly. It has been empirically shown that model choice of CLPM or
RI-CLPM can be critical in terms of the signs, statistical significance, and magnitudes of
key parameter estimates (i.e., cross-lagged parameters) for reciprocal relations (e.g., Orth,

Clark, Donnellan, & Robins, 2021; Usami, Murayama, & Hamaker, 2019). RI-CLPM is a



useful analytic option, but various kinds of (SEM-based) statistical models are available
for examining reciprocal relations, and model choice is still an ongoing issue (see Andersen,
2022; Asendorpf, 2021, Hamaker, 2023; Lucas, 2023; Liidtke & Robitzsch, 2022; Usami,
2021; Usami, Murayama, et al., 2019 and later discussion).

Along with these increasing applications and theoretical interests, Usami (2023) aimed
to synthesize the SEM-based approach traditionally used in psychology and the potential
outcome approaches used in epidemiology, in order to enable flexible and robust inference
of within-person relations. This method consists of a two-step procedure that assumes the
similar data-generating process (DGP) as assumed in the RI-CLPM. In this approach, the
within-person variability scores (WPVS) for all participants, which are disaggregated from
their stable trait factor scores, are first predicted in each variable using SEM. Then, causal
parameters modeled at the within-person level are estimated using a potential outcomes
approach with the calculated WPVS, such as marginal structural models (MSMs; Robins,
1999; Robins, Herndn, & Brumback, 2000) or structural nested (mean) models (SNMMs;
Robins, 1989, 1992). Usami (2023) originally assumed a situation where researchers sought
to investigate the unidirectional relation between variables, but it is straightforward to
extend the approach to reciprocal relations. For brevity, we will refer to this two-step
estimation approach as the T'S method.

The TS method has some advantages over RI-CLPM. If researchers assume a DGP that
includes stable trait factors, then they need to model the relations among WPVS as latent
variables. This corresponds to the fact that RI-CLPM is sometimes classified as a deviation
model rather than an observation model (e.g., Andersen, 2022). However, in the standard
SEM as covariance structure analysis (CSA), estimating curvilinear (e.g., quadratic) effects
and interaction effects for latent variables can be challenging in terms of implementation,
especially if multiple indicators are not available for each variable at every time point
(e.g., Kenny & Judd, 1984; Klein & Moosbrugger, 2000; Kline, 2023; Marsh, Wen, &

Hau, 2006). Even if multiple indicators are available, identification may require strong



parameter constraints, and implementation could be very difficult, especially for cases in
which researchers wish to include interaction effects between variables from different time
points (e.g., X3Y}* for variables X* at ¢ = 3 and Y* at ¢t = 1 at the within-person level).
Bayesian approach is a useful alternative (e.g., Lee, 2007; Ozkok et al., 2022), but plausible
specifications of priors and computation time can be challenging. For these reasons, usual
applications of RI-CLPM do not assume curvilinear and interaction effects of variables at
the within-person level (i.e., WPVS). On the other hand, in TS method, such effects can
be introduced in a straightforward manner because the predicted WPVS are directly used
for causal parameter estimation.

Another potential advantage of the TS method is the manner in which it accounts
for time-varying confounders from the view of causal inference. RI-CLPM (and other
SEM-based models) was originally proposed to uncover reciprocal relations between fo-
cal variables at the within-person level (X* and Y™*), and it does not directly account for
time-varying confounders. One reasonable procedure to account for observed time-varying
confounders in RI-CLPM is to simply include them in the lagged regression (i.e., structural
models) for reciprocal relations like ANCOVA. However, along with the potential aforemen-
tioned restrictions in modeling curvilinear and interaction effects for observed time-varying
confounders, this approach requires researchers to correctly specify all structural models
at each time point, and parameters might be seriously biased if researchers miss some
unobserved time-varying confounders. On the other hand, as we will illustrate, a more
accurate estimate of causal parameters can be obtained under certain conditions using the
TS method, especially with SNMMs (we call these TS-SNMMs later for brevity), even if
unobserved time-varying confounders and some model misspecifications in models for focal
variables exist. Also, no models for (the distributions of) observed confounders are needed
for estimation. These advantages are particularly evident when estimating the time-specific
effects (controlled direct effect: CDE) of time-varying predictors/treatments on outcomes,

as model misspecification issues are especially likely to arise in such cases (e.g., Mulder,



Usami, & Hamaker, 2024).

The TS method is also potentially advantageous for handling improper solutions. Though
this risk of these occurring in RI-CLPM is empirically known to be smaller than in some
SEM-based approaches, it can still frequently produce improper solutions (e.g., the non-
Hessian matrix of trait factor scores and negative variances), especially when either the
sample size or the number of time points is small (Orth et al., 2021; Usami, Todo, &
Murayama., 2019). The TS method takes a two-step estimation approach, so not all pa-
rameters are simultaneously estimated as in SEM-based approaches. This can reduce the
risk of obtaining improper solutions caused by sample fluctuations and model misspecifi-
cations.

For these reasons, the TS method can be considered as a viable alternative of RI-
CLPM (and its variants) for inferring within-person (reciprocal) relations, especially when
researchers wish to account for time-varying confounders. Comparing estimation results
between these approaches could also be useful as a kind of sensitivity analysis. However,
MSMs and SNMMs have been developed in epidemiology and we have seen few applications
of these methods in psychology, while useful introductions and applications of MSMs and
SNMMs are increasing (e.g., Loh & Ren, 2023ab; Mulder, Luijken, Penning de Vries, &
Hamaker, 2024; Mulder, Usami, et al., 2024; VanderWeele, Hawkley, Thisted & Cacioppo,
2011; Vansteelandt & Joffe, 2014). Actual applications of SNMMs have also been infrequent
in other disciplines because of limited software availability and tutorials (Vansteelandt
& Joffe, 2014), as well as its typically strongly theoretical presentation and challenging
implementation (Wallace, Moodie & Stephens, 2017a). SNMMs, however, are suitable and
robust for handling violation of the usual assumptions of no unobserved confounders and
sequential ignorability (Robins, 1999; Robins & Hernan, 2009; Vansteelandt & Joffe, 2014).
Only a brief introduction of MSMs and SNMMs was provided in Usami (2023), and there
are not many applied researchers in psychology who are capable of applying such novel

methods.



On a related note, another important limitation of Usami (2023) is that their estima-
tion performance was assessed under restricted scenarios of model (mis)specifications with
limited conditions for the number of time points and the magnitudes of WPVS and stable
trait factor (co)variances. WPVS need to be predicted in the first step of the TS method,
which may result in less accurate causal estimates, especially when the number of time
points is limited under a misspecified measurement model. One of the primary motivations
for performing the simulation in Usami (2023) was to compare the performance of the TS
method (which aims to conduct true score centering [e.g., Asparouhov & Muthén, 2018]
based on stable trait factors) over different centering methods (i.e., observed person-mean
centering). Therefore, difference in estimation performances (e.g., the bias of causal pa-
rameters estimates and the frequency of improper solutions) between the TS method and
RI-CLPM is still an open question.

In this paper, we provide a tutorial, simulation, and illustrative example of how to use
the TS method to infer within-person (reciprocal) relations, focusing especially on using
TS-SNMMs to estimate causal parameters by utilizing the R package DTRreg (Wallace et
al., 2017ab), which was not used in Usami (2023). We demonstrate in large-scale simula-
tions that TS-SNMMs can flexibly and accurately estimate causal parameters due to them
being doubly robust, even if unobserved time-varying confounders and some model mis-
specifications in models for focal variables exist. We also show that TS-SNMMs work well
in many conditions if longitudinal data with 7" > 4 are available, while accuracy increases
as T becomes larger. The R code for TS-SNMMs is available in a supplementary document
to make the method more accessible for applied researchers.

The remainder of this paper is organized as follows. In Section 2 we start our discussion
by introducing assumed DGPs and the definition of causal effects, while appropriately
referring to Usami (2023). Readers familiar with these may skip this (sub)section. TS-
SNMMs are introduced in Section 3, and simulations are provided in Section 4. Section 5

describes an empirical application of TS-SNMMs using data from the Tokyo Teen Cohort



(TTC) study. A summary is provided in the final section along with a discussion of our

future research agenda.

2 ASSUMED DATA-GENERATING PROCESS AND
DEFINITIONS OF CAUSAL EFFECT

2.1 Data-generating process

We suppose that data are generated at fixed time points and let X;; and Yj; denote con-
tinuous focal variables at ¢ (t = 1,...,T) for person i: researchers wish to infer their
within-person relation. Like application of RI-CLPM, for inference of within-person rela-
tion repeated measures of outcomes as well as predictors/treatments are required. Also,
let L;; be the observed continuous and time-varying confounders. We assume a single con-
founder here for explanation purposes. For the same reason, time-invariant confounders
are not assumed here. Suppose that a time-varying confounder has three characteristics:
it is independently associated with future focal variables as well as future confounders, and
it is affected by earlier focal variables and confounders!.

Figure 1 is a directed acyclic graph (DAG) that expresses the causal relations among
variables in the assumed DGP of T' = 4. Because we suppose the presence of stable trait
factors in DGP, as in RI-CLPM, this DAG includes stable trait factors I as time-invariant
factors. This DAG is similar to the one presented in Usami (2023, Figure 1b), but it
now assumes that X;;, Yi;, and L;; are measured at the same time, and thus, no direct
causal relation is assumed among them within each time point. This setting is analogous

to the path diagrams of the SEM-based statistical models (e.g., RI-CLPM). Each solid

I'Not only time-varying confounders L but earlier focal variables can be confounders in inferring within-
person relations of interests (e.g., Yj;—1) would be a confounder in estimating causal effect of X;;_1) on

Y;+ in dynamic process).



single-headed arrow represents a direct causal relation, and a dashed double-headed arrow
indicates the covarying relations due to unobserved confounding. Dashed circles are used
to express latent variables. To keep the illustration simple, here we temporarily assume
first-order linear lagged effects of variables.

By the properties of stable trait factors (specifically that the difference between the
expected value of measurement of each person and the temporal group mean is invariant
over time; see Usami, 2023), these factors have zero means (E(I,) = E(I,) = E(I;) = 0)
and additively influence respective measurements. For the same reason, the values of the
coefficients corresponding to the paths from these factors to the measurements are restricted
to one.

In this DAG, directed edges from WPVS, which are expressed by variable names with
an asterisk (e.g., Y3), are drawn to the corresponding measurements. Directed edges are
assumed between WPVS as (time-varying) latent variables rather than between measure-
ments. Without loss of generality, we assume that WPVS for all variables have zero means.
It is important to note that WPVS are also assumed to be uncorrelated with stable trait
factors (we will revisit this issue in the Discussion). As a result, like RI-CLPM, stable
trait factors I have only direct effects on measurements, and each measurement can be
decomposed into a (linear) sum of time-invariant (stable traits) and time-varying factors
(i.e., WPVS) that are mutually uncorrelated.

Under the linear causal DAG model, the DGP can be represented by the following

equations, which correspond to RI-CLPM that includes L:
Yie = pte + Lyi + Y55, Xit = poe + Ly + X3, L = pue + Iy + L, (1)
for t > 1, and
Y;: = 5yytyih(kt71) + ByﬂftXi*(tfl) + ﬁylth(tq) + dyit
Xt = BeytYi(i—1) + Bear Xi—1) + BennLip—1) + duie (2)

Liy = BiytYie—1y) + B Xi—1y + BueLip—1y + e



for t > 2. p and d denote the temporal group means and residual terms, respectively, and
they are omitted in the DAG representation. As noted, stable trait factors are assumed to

be uncorrelated with WPVS. For example,
Cov(l;,Y;;) =0, Cov(l,, X;) =0, Cov(l,,L;)=0 (3)

for a stable trait factor of a variable Y (I,;), and the same applies to I,; and [;; as well.
As implied in Equation (1), under these specifications, Y;;, X7, and L}, represent tem-
poral deviations from the expected score for person ¢ at t (i.e., py + Iyi, par + Iy, and
i + 1;), whereas the stable trait factors represent stable between-person differences over
time. To put it another way, WPVS can be characterized as the difference between a mea-
surement and its expected value for each person at each time point (see Usami (2023) for
further explanation). Additionally, (co)variances of measurements at ¢ can be expressed as

the sum of those of stable trait factor scores and WPVS. For example, for a variable Y,
Cov(Yi,Yiw) = Cov(Y;, Y) + Var(ly). (4)

In RI-CLPM, the initial deviations (WPVS) are modeled as exogeneous variables, and their
variances and covariances are estimated.

RI-CLPM can identify the parameters from data with 7" > 3. If one is interested in
inferring first-order lagged effects of X* on Y* (X} ;| — Y}*), Byut in Equation (2), which is

called a cross-lagged parameter, is key.

2.2 Definition of causal effects at the within-person level

Below we assume a similar causal DAG model to that in Figure 1. However, unlike the
previous subsection, we relax some assumptions about WPVS, specifically that higher-
order, curvilinear (e.g., quadratic), and interaction effects for WPVS can exist. The current
focus is on evaluating the within-person relation between variables, that is, how one variable

at time t — 1 (e.g., X; ;) influences another variable at time t (e.g., Y;*) and vice versa



at the within-person level. This is equivalent to CDE of X} ; on Y;*. Also, we might be
interested in CDEs for a sequence of X7, X5, -, X ; on Y;*. For example, in addition to
CDE of X, on Y;*, CDE of X/ , on Y,* with controlling for future X* (X} ,), and CDE
of X; 5 on Y;* with controlling for future X* (X} ; and X} ,) might be a focus.

Stable trait factors and WPVS are mutually uncorrelated, and each measurement can
be characterized as a collider in causal DAG (i.e., it is causally influenced by stable trait
factors and WPVS; Usami, 2023), so causal effects of WPVS can be defined independently
from stable trait factors. However, modeling stable trait factors through measurements is
still required for estimating causal parameters because WPVS are latent variables (Usami,
2023). Below we first explain the definition of causal effects of X* (as predictor) on Y* (as
outcome).

We use overbars Y;* = {Y}*, ..., Y;*} to denote the history of Y* through ¢ and underbars
Y7 ={Y/, ..., Y/} to denote the future of this variable. Let Y;X;@—U (t=1,...,T) denote
the WPVS for the outcome that would take at time ¢ for person ¢ if this person had a
history of predictors X* at the within-person level )_(Z.*(t_l) = {Xj1,..., Xj,_y} through
t— 1. Y;XZ(FU is a potential outcome, which we connect to WPVS by the consistency

assumption (e.g., Hong, 2015; Mulder, Usami et al., 2024)
Yy =yt (5)

1—1); otherwise, Y;;"it-1 is counterfactual. Note that Y} is unobservable,

if Xy, 1) = T
and thus can be predicted in the first step of the TS method, while potential outcomes for
measurements (i.e., Y;;) are considered in the standard potential outcome approach.

In the potential outcome approach, causal effect refers to the contrast between potential
outcomes under different levels of treatments/predictors (i.e. X*). The average causal effect

on Y;; when X7, ) increases one unit from the reference value z7j;, _,, at time ¢ —1 can be

expressed as

E(y;:i;t,@@f@,lﬁl _ Y;@(tfz)vxf(zfm) — E(}/;:fr(t—2)’xj(z—l)+1> _ E(}/;:i:(tfm’x:{tfl))' (6)

10



The standard assumption of no unobserved confounders (or sequential ignorability) indi-

cates that
* TS ,0 * Ve ] T * Ok —%
Yot 1L XE, ) Yiioy, Lig-1), Xig—2) = Tig—o)- (7)

Here, (:E;.k(tﬂ), 0) is the counterfactual history, that is, the history that agrees with :Ej(td)
through time ¢ —2 and is zero thereafter. Equation (7) indicates that the potential outcome
at time ¢ (were the person receives X i*(t_l) = 0) is independent of X i*(t_l), given the observed
confounders in past time (X T oy }71.’(;71), E;'k(t71))2-

Along with the assumed causal DAG above, as well as the consistency and sequential
ignorability, we impose the stable unit treatment value assumption (SUTVA; no unmodeled
spillovers, e.g., Hong, 2015) and assumptions of positivity (i.e., the probability of taking
each level of predictor (X*) conditional on past variables is greater than zero) and modular-
ity (i.e., mechanisms that are not directly targeted by treatment /predictors are not altered).

Under these assumptions, the average causal effect in Equation (6) can be expressed by the

difference in conditional means given by information on observed confounders as
E’(}/itjf(t—z)ﬁxf&—u‘*‘l) _ E(Y;ff(t—z)@:&—n)
:E(Y;ﬂ?f(ktfl)v Ef(m), 7:@72) = fj(tq)a Xi*(tfl) = x;'k(r;sfl) + 1)

- E(KIIZ’Q_U, I_’:(t—l)? Xi*(t—Q) = j:;'k(t—Z)? X:(t—l) = x:&—n)- (8)

In other words, the average causal effect can be evaluated from the difference in conditional
means of Y;; between persons who receive X i*(tfl) = xf&fl) +1 (i.e., levels that are :132‘(7;71) +1
larger than their expected scores pi,—1) + I,;) and X ;‘(t_l) = x;‘@_l), given information on
the observed confounders’ history.

Similarly, we might be interested in CDEs as causal effects for a sequence of X* (e.g.,
X i*(tfl)) on Y;;. Suppose T' = 3, and that the DGP can be represented by linear and first-

order regression models, as in Equations (1) and (2) (assuming no interaction effects for

2Though )_ﬁf 1) and )_(Z.*( t_o) are the outcome and predictors, they can be characterized as confounders

in the assumed causal DAG
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WPVS). Then, a conditional mean E(Y3|Y3, L, X5 = 7%,) at t = 3 can be expressed as

7

a linear (weighted) sum of the terms =z, and x}:

E(ﬁyy?’y;; + ByasTip + ByisLiy + dyi?,)
:Byy3(6yy2E(Yiy{) + Bym?x:fl + 5yl2E(L:1)) + Byaﬁx; + ﬂyl3 (Bly2E(Y;y{) + 5lx2IZ1 + 5ll2E(L;'K1))

= [5yy3<5yy2E(Y£) + 5yl2E(L?1)) + 6y13(5ly2E(Yz‘>{) + 6ll2E(LZ1))]

(.

0
+ [6yy3ﬁyz2 + ﬁyl?;ﬁlzZ] x; + ﬁyzii x;'kQ
N ~~ 7 v
B3y B3a
=055 + B32Tis- 9)

The first term in the third line becomes zero because WPVS have zero means. From this
result, CDEs of X}, and X, when increasing one unit from each reference value (z}] and
x;y) become 3, and [33,, respectively. The (average) joint effects refer to the sum of CDEs
when commonly increasing one unit from the reference values 2] and 5 and it becomes
B4+ Bay- Note that 535, (= ByysByze + Byisbizz; the CDE of X7 on Y5*) can also be evaluated
by tracing the two paths X7 — Y5 — Y5 (= Byysfye2) and X7 — Ly — Y5 (= Byisfia2)
that start at X} and end at Y5, shown in Figure 1.

If the effect of X on Y5 is also a focus, E(Y;5|Y;}, LY, X}, = z}) at t = 2 can be
expressed as

E(ﬁyyﬁﬁ + Byz2iy + 5yl2L;1) = lﬂyzﬂE(Y;D + Byl2E(L;F1)] + Bya2 T = BTy, (10)

0 B

and thus the CDE of X}; when increasing one unit from the reference value x] at the
within-person level becomes 35, = B,42, which is equivalent to the cross-lagged parameter
in Equation (2). Note that because stable trait factors are not associated with the WPVS
in the assumed DGP, the effects of X* on Y* can be numerically equivalent to those on Y
(i.e., measurements) (Usami, 2023).

Compared with other disciplines, such as epidemiology, investigations of joint effects in

psychology have been limited in applications of SEM-based approaches (e.g., RI-CLPM)
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where only the cross-lagged parameters gather attention from researchers (e.g., Mulder,
Usami et al., 2024). However, useful information can be gained by interpreting each CDE
and joint effect of time-varying treatments/predictors (e.g., how a change in X (1—2) at two
previous time points influences Y;*, fixing X (*;71)).

Unlike the usual applications of SNMMs in epidemiology, in SEM-based approaches
(e.g., RI-CLPM) in psychology researchers are often interested in uncovering reciprocal
relations of variables, and then the causal effect of Y* on X* is also a focus. In a similar

*

manner, the average causal effect of Y.*, ., on X when Y.*, .| increases one unit from the
) i(t—1) it i(t—1)

*7

reference value Yi(—1) at t — 1 can be expressed as
* Yooy i1y T1 * Yoy Y3 (e
E(Xit (t—2)"Yi(t-1) _Xit (t—2)"Yi(t 1))' (11)

In the TS method, when interested in inferring reciprocal relations between variables X*
and Y™, this is carried out by conducting separate analyses with X* and Y™* as outcomes,
respectively.

We can now summarize the assumptions for identifying causal parameters in the TS
method: (i) measurements (7" > 3) are expressed by a linear sum of stable trait factors
and WPVS that are mutually uncorrelated, (ii)) WPVS are expressed by functions of those
in past time, (iii) consistency, (iv) no unobserved confounders, (v) SUTVA, (vi) positivity,
(vii) modularity, The first assumption is unique to the TS method and RI-CLPM, and we
will revisit this issue in the Discussion.

Regarding the second assumption, if the DGP can be represented by linear equations,
such as in Equations (1) and (2) (assuming no interaction effects for WPVS), then RI-
CLPM (that includes L) can identify causal parameters. However, modeling curvilinear
(e.g., quadratic) and interaction effects for WPVS as latent variables can be often chal-
lenging in RI-CLPM. Furthermore, all structural models (as in Equation (2)) should be
correctly specified, which might be very restrictive. The risk of obtaining improper solu-

tions can also be an obstacle when applying RI-CLPM. TS-SNMMs can overcome these
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potential problems: they can provide a more flexible and robust inferential framework to-
ward model misspecifications, resulting in more accurate estimates of causal parameters

with a lower risk of improper solutions.

3 INTRODUCTION OF THE TS-SNMMs

In TS-SNMMs, WPVS are first predicted for each variable by SEM that only models
measurement parts with stable trait factors. Causal parameters in the structural model
are then estimated by SNMMs using predicted WPVS. Usami (2023) argues that this kind
of two-step approach has some strengths compared with simultaneous estimation, such
as (i) minimizing the risk of potential confounding in interpreting the estimation results
when either the measurement or the structural model is misspecified, (ii) having a greater
feasibility for analyses (because common factors or unit effects are not explicitly modeled
in SNMMs), and (iii) having less risk of obtaining improper solutions. Regarding the first
point, when a simultaneous estimation procedure like RI-CLPM is used, misspecification
in the structural models at the within-person level may greatly affect parameter estimates

in the measurement model ((co)variances of stable factors and WPVS), and vice versa.

3.1 Step 1: Estimation of measurement models and prediction

of WPVS

The first step is subdivided into two sub-steps: (i) specification and estimation of the

measurement models and (ii) prediction of WPVS.

3.1.1 Specification and estimations of measurement models

The RI-CLPM and TS approaches commonly assume (linear) measurement models like

Equation (1). This equation can be viewed as a model similar to the factor analysis model,

14



which includes a single common factor I (whose factor loadings are all one) and a unique

factor in the form of WPVS. In vector notation, this equation for outcome Y becomes
Yi=py + Iyile + Y7, (12)

where p, is a T x 1 mean vector, E(I,;) = 0, Var(ly) = ¢, and 17 denotes the T' x 1

vector whose elements are all one. Y;* is a T' x 1 vector of WPVS, and E(Y*) = 0 and

Cov(1l,;,Y;;) = 0. We denote as ¥, a T' x T variance-covariance matrix of WPVS. This

implies that the variance-covariance matrix of ¥ (denoted as ¥,)) is of the form:
Yy = oplrll + ¥, (13)

Unlike the standard factor analysis model, ¥, has a dependence structure and is not diago-
nal. Therefore, in using SEM to estimate the parameters in Equation (12), some structure,
such as the autoregressive (AR) structure, must be specified in ¥, to enable model identi-
fication. The specified model can then be diagnosed via model fit indices and local fit like
residual correlations.

Similarly, we also set measurement models for the other variables X and L separately
in this sub-step, then estimate parameters for the mean vectors (u® and p'), stable trait

factor variances (¢2 and ¢7), and variance-covariance matrices of WPVS (¥, and ;).

3.1.2 Predicting WPVS

Let Z; = (Y, X!, L)t and ZF = (Y;*, X', L)' be vectors of measurements and WPVS,
respectively, and let p = (i, pih,, p17)" be a mean vector. Also, let ¥ and ¥ be covariance
matrices for measurements Z; and WPVS Z.

We consider linear prediction of WPVS Zj under the condition that ¥ and ¥ are known.

Consider a 3T x 3T weight matrix W that provides WPVS from measurements

Zy = WHZi — p), (14)
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satisfying the relation
E(Z:Z:Y) = W'E((Z; — p)(Zi — p)']W = W'SW = . (15)

Unlike standard applications of factor analysis, we are interested in predicting WPVS
(unique factor scores) rather than stable trait factor (common factor) scores. With this
point in mind, the W that can minimize the risk function defined as the trace of a residual
covariance matrix (i.e., the mean squared error MSE(Z*)=E|[(Zf — Z)'(ZF — Z})]) and
also satisfy the relation in Equation (15) can be directly obtained by the so-called (linear)
correlation preserving predictor (e.g., ten Berge, Krijinen, Wansbeek, & Shapiro, 1999,
p.317)

Wt — \111/2(\113/22—1\113/2)71/2\1/3/22—1‘ (16)

Here, for a positive (semi)definite matrix C, we denote as C*/? the positive (semi)definite
matrix whose square equals C. Matrices C~%/2 and C®/? are the inverse (if it exists) and
third power of C/2, respectively.

We use the sample means Z and (unbiased) variance-covariance matrix S as estimators
of u and X. As implied from the relation in Equation (4), we use the estimated stable trait

factor variances to estimate U as
U=5—-d®Ilplk, (17)
where ® is an estimator of a 3 x 3 stable trait factor variance-covariance matrix ®:
é%y) QB(Y,X) GB(Y,L)
dvx) Py o |- (18)

QAS(Y,L) QAS(X,L) QE%L)

K>
I

Since stable trait factor covariances are not estimated in the previous sub-step, covariances
between calculated linear correlation preserving predictors from each variable are used (see
Usami (2023) for further details). From Equations (14) and (16)—(18), we can predict
WPVS Z: without specifying the structural models among variables at the within-person

level, successfully maintaining independence from the next step.
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3.2 Applying SNMMs

SNMMs were developed in epidemiology to estimate the causal effects of a sequence of time-
varying treatments/predictors in longitudinal studies, with effectively handling violation of
no unobserved confounders (U) under the assumed causal DAG where U influences both
the outcomes Y and the observed confounders L (Robins & Herndn, 2009; Vansteelandt &
Joffe, 2014). For notational simplicity, we use the symbols Y*, X* and L* below to denote
WPVS that are predicted in the first step.

For explanation purposes, we assume that one is interested in evaluating the CDEs and
joint effects of X% | on the outcome of the last time point (Y;), while allowing its curvilinear
(e.g., quadratic) and interaction effects. SNMMs simulate the sequential removal of the
effect (called blip) that X% | has on Y;i, after having removed the effects of all subsequent
treatments/predictors. More specifically, SNMMs models a blip in X; on Y, while holding
all future treatments/predictors at ¢’ > ¢ fixed at a reference level 0 (i.e., the level that is
equal to the expected scores of a person in the current context).

Linear SNMMs parameterize contrasts of Y;i}jz(tfn and Y;5%i-29 conditionally on con-

founder histories through t — 1 (¢t =2,...,T) as

* 7 * T 0 v —x * * * —*
E(Yp o0 = Y 27|V gy = Yigo1ys Lig-1) = L-1), Xig—1) = Tig-1))
= h(ie-1) _Ek(tq)a Tie—1); T)s (19)
where ht—1(§f(t_1), l_j(t_l), Ti1ys 7) is a known function with parameter vector 7 (Vanstee-
landt & Joffe, 2014).

Suppose we assume a DGP similar to the one in Figure 1 that has not only the first-order

(linear) effect of X* but also its interaction effect with L* for blip. In the later empirical
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example using the data of T" = 4, a linear SNMM may be given by

By — yamrel\ Ve = gn Ln = Iy, Xy = 25) = (85 + 1315) 75,
E(Y;mme? - YmatO Vs = g5, Ly = I, X = T5) = (85 + %li) 7, (20)
BV — YO = i, Ly = 1y, X5 = ) = (B) + il
Here, the first equation models the CDE of X/; on Y}i, the second models the CDE of X},
on Y;;, and the third models the CDE of X on Y;;. This is just one simple example,
but another specification, say (85 + 7305 + Va2lis + Vaslis) )3, could be possible to express
the interaction effects between X and the past confounders. From Equation (20), the

average joint effects of X on Y;; when increasing one unit from the reference values in

each predictor become

B3 +v3liz + B + valiy + 81 + 1l (21>

If no interaction effects are assumed, this becomes

P + 05 + B (22)

SNMMs consider a transformation Uy, ,)(7) (¢ = 2,...,T), the mean value of which is
equal to the mean that would be observed if treatments/predictors were stopped from time

t — 1 onward, in the sense that
E(U (MY 1ys Lig1y, Xite—ay = Tige—ay Xite—1)
=B(Y; e ’Y(t 1) L(_ 1) _i*(t_Q) = Ti4_2), Xj(1-1))- (23)
Here, U}, ,)(7) is a vector with components Y7 — T (Y, LY, X5 7). For instance,
in the current example for T = 4,
(1) =Y — (B3 + L) X5,
Ui () = Yii — (B3 + 73 Lis) Xis — (B3 +15L32) Xia, (24)

a(m) =Y — (85 + 73 Li5) X5 — (85 + 15 Lin) Xis — (87 + 1 Li ) X[

18



The assumption of no unobserved confounders (Equation (7)) together with the identity

(Equation (23)) implies that

E<Ui*(t71)(7-) D_/i?tfl)a L;'k(tfl)v Xi*(tfl)> = E(Ui*(tfl) (T)lffi?tfl)a E;'k(tfl)a Xi*(th)% (25>

indicating the conditional independence between Xi*( -1 and Ui*( 11" In the current example

for T' = 4, this indicates
Uzﬁ—u—X1|Y;>’1<7LZ<17 Uzg—u—X2|Y;§7L:27Xz*l7 UZEJ'LX3|)/£7L:37X:2 (26>

The parameters 7 can be estimated by solving the estimating equation Ex|[f(7;7, /)] = 0
implied by these moment conditions, where Ey denotes the empirical average function

(e.g., Vansteelandt & Joffe, 2014):

f(rsn, k

Mq

dt 1 t 1) L*(t 1)» Xi*(t—l)) - E(dt—l(iizt—naf/:(t—n’ 71zk(t—1))|y'i*(<t—1)) 7:(15—1)7Xi*(t—2))]o

t=2

[ i*(t—l)(T) — B( z‘*(t—1)( )| i(t— 1)7L*t 1) i*(t—Q))]? (27)

where

an*(t—l)(T) -

i1 (Yijo1ys Lig—1y, Xiy—1) = E Yiii-1)s _;((t—l)in*(t—l)] : (28)

0T
Here, 7,_; denotes the elements in 7 that are relevant to the assumption of conditional
independence (Equation (26)) at t — 1. For instance, in the current example for 7" = 4, we

can apply Equation (24) to obtain

e e oy o [OUR(D) | o 2 o | (OUB(R) OUS(T)
d3<Y;37Li37Xi3> - E|: 5 Y;37Li3ﬂXi3‘| - < 85; ) 8’75
0ﬁ3 Vi — (B3 +3L55) X35], _8,y§ (Yo — (85 + 3 Li3) X5

= (—X;},, —L:3X;;>>)t
OU,(7) aU;;(r))t
B o

an*1(7') aU;i(T))t
sy T o

d2(Yi§aE:27X;2> = ( (_Xikz, _L;QX;Q)t

(X7, —LuXa)" (29)

di(Yi, Liy, X3y) = <
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This estimating equation essentially sets the sum across the time points of the condi-
tional covariances between U;Et_n(T) and the function dt,l(}_fi*(‘t_l),Ej(t_l),)_(i*(t_l)), given
confounders, to zero. More specifically, in this example, the elements in Equation (27)

essentially become
(XG5 — E(X31V3, Liy, X)) < (Ui (1) — E(UA(T)|Y, Lis, X35)]
[Lis X35 — L BE(X35]Ya, Ly, X)) X (U (1) — BE(US(T)[Y3, Lis, X5)]
(X5 — B(XR[Y:5, Lip, X)) x [Un(7) — B(UR(7)|Yig, Ly, X))
[LinXiy — L:QE(XZ'*2|}_/;;7 I::27Xi*1)] x [Ui(T) — E(UE(T”YG; Ean X))
(X7 — BE(XALy, L)) < [UA(T) — E(UA (7)Y, L))

[L;‘lez‘*l - L:1E<X;1|}/;T7 le)] X [Ui*l(T) - E(Uz*1<7'>|yf1<a le)]‘ (3())

If homoscedasticity of the conditional variance Uj, (1) given confounders is satisfied, the
local semiparametric efficiency under the SNMM is attained by choosing dt_l(?;.*(‘t_l), E:‘(t_l), X Z.*(t_l)),
as in Equation (28) (Vansteelandt & Joffe, 2014).

As seen in Equation (30), solving the estimating equation (Equation (27)) requires a
treatment model A for the treatment /predictor X;‘(t_l): f(Xi*(t_l)|§7;Et_l), E;k(t_l), X;‘(t_z); n).
It also requires a treatment-free model B (Wallace et al., 2017b) for the conditional mean
of Ui*(t_l)(T), namely, f(UZ.*(t_l)(T)m’(*t_l), [_J;‘(t_l),)_(i*(t_m; k). Notably, when the parameters
n and k are variation-independent, the estimator that solves Equation (27) (called G-
estimator), obtained by substituting 7 and x with consistent estimators, are doubly robust
(Robins & Rotnitzky, 2001, cited from Vansteelandt & Joffe, 2014; see also Loh & Ren,
2023a), meaning that estimates of causal parameters are consistent when either model A or
model B is correctly specified. Note that parameters 7 can be estimated by setting outcome
models that include predicted X H—1) obtained by treatment model as well as (residual of)
predictor/treatment and confounders, and also by using OLS estimator or SEM framework

(e.g., Loh & Ren, 2023ab; Mulder, Usami et al., 2024). The R package DTRreg we will

soon illustrate later also utilizes the least squares for estimating 7.
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Though we have supposed situations with CDEs (and joint effect) of X on Y}, the
CDEs of X} , on Y;* for t < 4 can also be modeled and estimated in a similar manner (e.g.,
Loh & Ren, 2023a). Likewise, the opposite relation for the effects of Y;* | on X can also
be investigated with a separate procedure.

To summarize, in the second step of using (linear) SNMMs, we first specify the blip
model (e.g., Equation (20)) for time-varying treatments/predictors that may have curvilin-
ear and interaction effects (e.g., X;?, and X; ;L} ;). We then consider a transformation

i*(tfl)(T) (e.g., Equation (24)), and the parameters for blip (7) are estimated based on
moment conditions implied by conditional independence (e.g., Equation (26)). When es-
timating the parameters, the treatment model A and the treatment-free model B need to
be specified based on the assumed DGP, but SNMMs have the property of being doubly
robust. We further explain below the specifications of these models using the R package

DTRreg (Wallace et al., 2017b).

3.3 SNMDMs via the R package DTRreg

The framework of SNMMs is often presented using estimation equations like Equation (27).
However, Wallace et al (2017a) explained that the same calculation may in fact be con-
ducted using a relatively straightforward series of matrix equations based on least squares
(see Wallace & Moodie, 2015, Loh & Ren, 2023a, and the Web Appendix® provided by
Wallace et al., 2017a for more details). More specifically, the final stage (i.e., t = T)
blip parameters are estimated first, before working backwards until every stage at t has
been analyzed. By working recursively, we are able to calculate each potential outcome by
plugging in all future blip parameters.

Suppose we assume a DGP similar to that in Figure 1, and first-order (linear) effects

of X* and its interaction effect with L* are assumed for the blip model in 7" = 4, as in

3http://links.lww.com/EDE/B134
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Equation (20). 85 and v; (i.e., the effects associated with X7 on Y;}) are first estimated
using the moment condition induced by the conditional independence between X% and U}
(Equation (26)). After plugging in these estimates, 55 and ~y; are estimated next based on
the conditional independence between X, and Uj. Finally, using the estimates obtained so
far, B} and 7} are estimated based on the conditional independence between X} and U};.
Even if this matrix equations approach are taken, specifications of the treatment model A
and the treatment-free model B are required. These models are expressed in the R package
DTRreg as treat.mod and tf.mod, respectively.

In the current example, from the assumed DGP A can be specified as an (linear) AR(1)
model. If a researcher is interested in the CDEs (and joint effect) of X on Y}*, treat.mod

may be specified in the R package DTRreg as

treat.mod <- list(X171, X27"X1+L1+Y1, X37X2+L2+Y2).

Note that X171 indicates that only an intercept is included because X7 is now treated as
an exogenous variable. In B, because the outcomes Y* are modeled by the similar (linear)
AR(1) model (with interaction effects between X* and L*) in the assumed DGP, if X =0,
then the conditional means of Y;* used for Us(7) (given Yy, L%, and X3) can be expressed
by a linear (weighted) sum of Y3 and L3i*. Next, if X; = X; = 0, then the conditional
means of Y used for Us(7) (given Yy, L3, and X7}) becomes a linear (weighted) sum of Yy
and Lj. Likewise, if X; = 0, then the conditional means of Y} used for U;(7) (given Y;*
and L}) becomes a linear (weighted) sum of Y;* and Lj. Thus, tf.mod can be specified in

the R package DTRreg as

tf.mod <- list("Y1+L1, ~Y2+L2, “Y3+L3).

Note that one can allow curvilinear and interaction effects for WPVS in A and B, but this

can be challenging when using RI-CLPM as CSA.

4Because there are no direct effects of X3, Y5* and L3 on Y} in the assumed DAG, they can be omitted

here.
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In addition to these, the blip model needs to be specified in the R package DTRreg.
Since the interaction effect between X* and L* is now assumed, the blip model (expressed

as blip.mod) can be expressed as

blip.mod <- 1list("L1, ~“L2, ~L3).

If no interaction effect is assumed, then the specification becomes

blip.mod <- list("1, ~1, ~1).

The causal parameters 7 can now be estimated in the R package DTRreg by three models

specified so far:

mod<-DTRreg(Y4, blip.mod, treat.mod, tf.mod, var.est="sandwich", type="alt"),

where the option var.est="sandwich" specifies the robust (or sandwich) variance estima-
tor obtained using standard estimating equation theory (Web Appendix in Wallace et al.,
2017a; see Hardin & Hilbe, 2013 pp.30-34 for further details). Though nuisance parameters
n and x need to be accounted for to obtain better estimates of standard errors, Wallace
et al. (2017a) explained that sandwich estimators that ignore the nuisance parameter es-
timation typically perform as well as the bootstrap or the nuisance parameter corrected
standard error. The package DTRreg also offers a variety of more complex options, includ-
ing bootstrap, and it can be specified by a combination of var.est="boot" and B=n for
the number of bootstrap replications (Wallace et al., 2017b).

Using the command type="alt", summary(mod) and coef (mod) return summaries and
blip parameter estimates in a fashion similar to more familiar commands like 1m and glm
(Web Appendix in Wallace et al., 2017a). Additionally, the package DTRreg will automati-
cally ignore any persons with missing data (thereby carrying out a complete-cases analysis),
but if the option missing = "ipcw" is specified, then the inverse probability of censored
weights (e.g., Hernan & Robins, 2021) is used. The probability of censoring is estimated via
logistic regression on the full covariate history up to that point (Web Appendix in Wallace
et al., 2017a).
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4 SIMULATIONS

There are two main goals in the simulations. The first is to investigate the performance
of TS-SNMMs under various data-generating conditions in which data are generated by a
linear sum of stable trait factors and WPVS, as in RI-CLPM. In the first simulation, we
assume there are no misspecifications in the structural models. The second is to demon-
strate the robustness of TS-SNMMs and to compare its performance to RI-CLPM under
the presence of unobserved time-varying confounders U* (that influence outcomes Y* and
observed time-varying confounders L*) and model misspecifications caused by observed
time-varying confounders L* (whose direct second-order effect on the outcome is ignored)
in the structural model. Second and third simulations are performed for this purpose.
Throughout the simulations, we suppose a situation where researchers want to evaluate
the CDEs of X/ _, and X, (i.e., we do not focus on the CDEs from Xi*(T—S)) on Y,
and vice versa for the reciprocal relation. For simplicity, we also assume that the interaction

effects of predictors with observed confounders are not present.

4.1 Scenario 1: No misspecifications in the structural models
4.1.1 Method

Three stable trait factors are first generated by the multivariate normal:

I 0 P*  ¢rp ¢'rp
I =MVN 0 ) ¢27"B ¢2 ¢27”B ) (31)
Ij; 0 P*rg P*rp P
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where ¢? is a stable trait factor variance and 5 is a correlation between factors. The initial

WPVS are generated independently from the stable trait factors as

Yi 0 1—¢*  (1—-¢)rw (1-¢*)rw
Xy | =MVvN 0. O=¢ry 1-¢2 (1-¢)rw ; (32)
Ly 0 (1—=¢*)rw (1—¢*)rw 1—¢?

where 7y, is a correlation among the initial WPVS. Then, the WPVS at successive times
are sequentially generated via a first-order linear regression model with time-invariant co-

efficients:

Y = 0.30Y,_y) + 0.20X;,_y) + 0.20L_y) + dyi
Xj; = 0205,y + 0.30X7,_y) + 0.20LY, 1) + duse (33)

L:t - 020)/;&,1) + 020 Z'*(tfl) "‘ 030‘[’:(1571) + dlit-
When T = 3, this parameter setting indicates (see Equation (9) for the calculation)

E(Y;%2) = E(0.30Y;% + 0.20L%,) + 0.202%, = (0.06x + 0.04z%) + 0.20x%, = 0.10z%, 4 0.20z,

E(X35%2) = 0.10y}, + 0.20y5,. (34)

More generally, the CDEs of X[;._, and X;_ (with X {(r—3) ot manipulated) on Y} can
be evaluated by B (Y75 r=2%r-0) = 0.10257_y +0.202;7_;,. Similarly, B(X -2 %) =
0.10y; 79y + 0.20y;7_y)- Therefore, accurately estimating these four coefficients of CDEs
(0.10,0.20,0.10,0.20)" for within-person reciprocal relations is a shared goal between TS-
SNMMs and RI-CLPM.

The variance of the normal residual d for each variable was set so that ratio of the
variance of WPVS at time ¢ (e.g., var(Y;;) for V) to that at time ¢t = 1 (e.g., var(Y}}))
becomes var(Y;)/var(Y;) = %j;l)w More specifically, when ¢ = 7', this ratio becomes

w (i.e., w =wvar(Y})/var(Y;)). When w = 1, the variance of WPVS is constant over time.

Note that residual variances were controlled over time in the simulations of Usami (2023).

25



Like RI-CLPM, measurements are then generated as
Y =1, +Yy, Xi=Ilu+ X, Li=Ii+ Ly, (35)

where temporal group means are set to zero at each time point for each variable.

In this simulation, we systematically changed the total number of persons to N =
200,600, 1000, the number of time points to T" = 3,4,6,9, the variances of stable trait
factors to ¢? = 0.1, 0.4, 0.7, the correlations between stable trait factors to rg = 0.1, 0.3, 0.5,
the correlations between initial WPVS to r,, = 0.1,0.3, 0.5, and the ratio of the variance of
WPVS at time t = T to that at time ¢t =1 to w = 1, 3,5. Some major differences from the
simulations in Usami (2023) are that more varied specifications of 7" and the manipulations
of rg, rw, and w. By crossing these factors, we generated 200 simulation data for each
combination of factors. Under each simulation condition, we calculated the bias and root
mean squared error (RMSE) of estimates from TS-SNMMs and RI-CLPM (which assumes
first-order lagged regressions that include L*).

In the first step of TS-SNMMs, a model that assumes a linear AR(1) structure with time-
varying autoregressive coefficients and residual variances was specified to predict WPVS
in each variable when 7" = 3. The models with similar AR(2) and AR(3) structures were
also specified in the T'=4 and T' = 6,9 conditions, respectively. Note that in the current
DGP, a true measurement model for each variable has an AR(T — 1) structure in WPVS,
but such a measurement model cannot be identified. Therefore, the measurement model
is more or less misspecified in the current setting. In the second step, both the treatment
model A and the treatment-free models B were correctly specified. For example, in T'=9
(the CDEs of X7 and X§ on Yy"), three models are specified in the package DTRreg as
treat.mod <- list(X77X6+L6+Y6, X8 X7+L7+Y7)
tf.mod <- list("Y7+L7, ~Y8+L8)

blip.mod <- list(™1, ~"1).

Estimation results are discarded when improper solutions because of out-of-range pa-

26



rameter estimates (e.g., negative variance or the singular Hessian matrix for trait factors)
occur when applying either TS-SNMMs or RI-CLPM. The simulation was conducted in R
using the package lavaan (Rosseel, 2012) to estimate parameters with MLE in RI-CLPM
and in measurement models for the first step of TS-SNMMs. The package DTRreg was
used in the second step of TS-SNMMSs. The simulation code is available in the Online

Supplemental Material.

4.1.2 Results

Figure 2 shows averages of estimated CDEs from the TS-SNMMs (with an AR(1) measure-
ment model for WPVS in the first step) and RI-CLPM. The dashed lines represent the true
values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and
the deviation from these lines indicates the bias. Because similar tendencies were observed,
we provide results for the effects of X* on Y* (the sizes of the first-order CDE from X}._,
and the second-order CDE from X7, are 0.20 and 0.10, respectively), and those of Y* on
X* are provided in the Online Supplemental Material (Figures S10-S11). Also, the impacts
of N and ry were not relatively large in terms of biases, especially in the second-order
CDE estimates, which exhibited a larger variability than the first-order CDE estimates
(see Table S1 of the ANOVA results, where calculated biases are set as outcomes). Here,
we provide results from N = 1000 and ry = 0.3, and we confirm that whole conclusions
are not influenced by differences in N and ry (Figures S2-S5).

Since the data were generated by the process assumed in RI-CLPM, RI-CLPM can
accurately estimate the parameters. However, since improper solutions often arise, espe-
cially when N is small or ¢? = 0.1 (i.e., small true stable trait variances cause negative
estimates), small (negative) biases occur in RI-CLPM as a result of discarding estimates
with improper solutions. The magnitudes of RMSEs were similar between TS-SNMMs and
RI-CLPM (Figures S1,56-S9), so we will focus particularly on the results of biases below.

TS-SNMMs show biases in some conditions because of the misspecified measurement
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model in the first step. However, these biases become smaller as T becomes larger and ¢?
becomes smaller. When 7' is as small as 7" = 3, TS-SNMMs show large biases in many
conditions (e.g., the relative biases over true CDEs exceed 10%), so even though T'S-SNMMs
can be used in T = 3 for some conditions, such as ¢? = 0.1, it is generally advisable not
to do so. On the other hand, when T" > 4, biases were within 10% of the relative biases
over true effects in most conditions, the exceptions being when trait factor correlations
were small and the proportions of variances explained by within-person fluctuations (i.e.,
WPVS) were kept small over time (i.e., large ¢* = 0.4,0.7 and small rg = 0.1 and w = 1).
The overall results become more accurate when 7' > 6.

When an AR(2) measurement model was used in TS-SNMMs for 7" = 4, the positive
biases observed in some conditions were mitigated, but the overall differences were almost
ignorable (see Figures S12-S13 in the Online Supplemental Material). The same tendencies
were observed when either AR(2) or AR(3) measurement models were used in 7' > 6.
Therefore, the choice of AR order in the measurement model does not have a large impact
on biases, at least in the current parameters setting.

Table 1 provides the proportions of improper solutions calculated when a total of 200
proper solutions were obtained in each condition. It shows that improper solutions very
often arise in RI-CLPM, especially when ¢? is small, but also that the sizes of both N
and T have large impacts. RI-CLPM produces improper solutions more frequently than
TS-SNMMs in all conditions. This difference results from the fact that TS-SNMMs predict
WPVS from the measurement model of each variable, while RI-CLPM estimates structural
models and measurement models for all variables simultaneously. With the exception of
¢? = 0.1, improper solutions arise in less than 1% of the simulations in TS-SNMMs when
T > 4. When T = 4,6 and ¢*=0.1, improper solutions arise in more than 15% in all
conditions, even if N becomes larger in RI-CLPM. In cases of small N, the risk of improper

solutions in RI-CLPM becomes an issue if either T is small (7' < 4) or ¢? is small (¢?=0.1).
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4.2 Scenario 2: Unobserved confounders that influence observed

time-varying confounders and outcomes

4.2.1 Method

We consider the DGP in which an unobserved time-varying confounder U* influences both
the observed time-varying confounders L* and the outcomes Y *. In this scenario, controlling
for L* (as a collider) to infer the causal effects of X* on Y* introduces bias through U* on
the path from X* to Y* (e, Xo , < Y} s« Uj_, > Uiy = Uj_y —» Uj_, — Y}).
This is known as collider bias, and this DGP is in line with the one typically assumed
in the epidemiological literature on MSMs and SNMMs (e.g., Robins & Herndn, 2009;
Vansteelandt & Joffe, 2014). Such a DGP might be assumed when researchers perform a
sequential randomized trial and the treatment model can be correctly specified (i.e., one
is sure how the treatments/predictors X* can be explained by other observed variables,
but the outcomes Y* and the observed confounders L* may be influenced by unobserved
confounders U*).

For this DGP, the AR(1) process is assumed in the model for U as Uj, = 0.7U,_ ) +dut,
and the variance of the residual d,; is manipulated according to w like other variables. Y™*

and L* are then generated as

Yy = 0.30Y;,_q) + 0.20X7,_) + 0.20L7,_1y + 0.30Uj;_1) + dyat

Lj, = 0.20Y;,_y) + 0.20X,_;) + 0.30L5,_y) + 0.30U,_y, + dyu, (36)

while X* is generated as in the previous simulation. Both the treatment model A and
the treatment-free model B were specified as in the previous simulation, and we compared
the estimation performances of TS-SNMMs and RI-CLPM that ignored U*. Namely, in
TS-SNMMs B is misspecified in inferring effects from X* on Y*, whereas A is still correctly

specified. Thus, TS-SNMMs can receive doubly robust property.
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4.2.2 Results

Figure 3 shows the averages of estimated CDEs of X* on Y* in TS-SNMMs (that assume
an AR(1) measurement model for WPVS in the first step) and RI-CLPM. Because the
impacts of N and 7y on the results were again smaller in terms of biases, we provide the
results for N = 1000 and ry = 0.3. We also confirm again that the choice of AR order
in the measurement model does not have a large impact on biases in TS-SNMMs (Figure
S14). From Figure 3, we can see that TS-SNMMs show a similar amount of biases in each
condition to those in the previous simulation. Namely, with the exception of the specific
conditions shown above (large ¢* = 0.4,0.7 and small 75 = 0.1 and w = 1), the biases were
small in 7" = 4, and the overall results become more accurate as T' became larger.

On the other hand, notable positive biases were observed in RI-CLPM for the second-
order CDE of X*. With the exception of the conditions specified above, the biases became
larger in RI-CLPM than those in TS-SNMMs in 7" > 6, and RI-CLPM exhibited more
than a 10% level of relative biases over the true CDE in all conditions. This demonstrates
that estimates from RI-CLPM can be seriously biased by unobserved confounders (that
influences both observed confounders and outcomes), while TS-SNMMs are robust to this
influence.

These methods are also competitive in estimates for the second-order CDEs of opposite
relation (Y* on X*), but they commonly show small amounts of biases (Figure S15) because
in TS-SNMMs both A and B are misspecified in the current DGP. More specifically, the
model for Y7 , is influenced by the previous U*, and so too is X7 via the causal path
Y/, Ui g = Uiy — Ly — XJ. Therefore, in the current DGP, TS-SNMMs can
more accurately estimate the (second-order) CDEs of X* on Y* than RI-CLPM, but not
the (second-order) CDEs of Y* on X*.

As shown in Table S2, similar tendencies were observed for the frequency of improper

solutions as in the previous simulation. RI-CLPM very often produces improper solutions:
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at least 30% of all cases when ¢? is as small as 0.1. Even for larger ¢?, when T and N
are as small as T'= 4,6 and N = 200, the observed proportions were around 10%. On the
other hand, the risk of obtaining improper solutions in TS-SNMMs was much smaller than
RI-CLPM.

One might consider that when such unobserved confounders exist, one can avoid refer-
ring to such biased estimation results from RI-CLPM by diagnosing some model fit indices.
However, in the current scenario, 98.06% of the estimation results from RI-CLPM showed
an SRMR lower than .05. Likewise, 99.97% and 97.23% of the results from RI-CLPM
showed a CFI larger than .95 and an RMSEA lower than .05, respectively (see Table S3).
These proportions exceeded 70-80% on average, even when 7' and N were small. Therefore,
it would be very difficult to detect collider biases caused by U* through these model fit

indices alone.

4.3 Scenario 3: Ignored direct higher-order effects of observed

time-varying confounders on outcomes

4.3.1 Method

In this scenario, we assume that there are ignored direct higher-order effects of L* on Y™*.
Although a first-order lagged effect is often assumed when applying the (RI-)CLPM, an
ignored (direct) higher-order effect leads to biased causal estimates unless it is zero, and
assessing the number of order is a major task in inferring within-person relations. However,
as the numbers of time points and observed time-varying confounders increase, this task
becomes more complex, and the risk of misspecifications can increase.

In this scenario, Y* is generated as

}/;: - 030}/@2}_1) —|— 020Xz*(t—1) + 020L;k(t_1) ‘l‘ OQOL:(t_Q) + dyit, (37)

’f‘(T72) influ-

while X* and L* are generated similarly as in the first simulation. Because L;

31



ences both X%,y and Y7, it is obviously a confounder in evaluating the relation between

Xy

causal estimates in RI-CLPM. Both the A and B models were specified as in the first

and Y7, and we expect ignoring L:(T—Z) in structural models for Y leads to biased

simulation, and we compared the estimation results between TS-SNMMs and RI-CLPM
that did not include L:(t—Q)' Namely, B was misspecified, but A was still correctly specified
when estimating the effects of X* on Y* in TS-SNMMs.

4.3.2 Results

Figure 4 shows the averages of estimated CDEs of X* on Y* in TS-SNMMs (that assume an
AR(1) measurement model for WPVS in the first step) and RI-CLPM. Since the impacts
of N and ry on the results were again smaller in terms of biases, we provide here the
results when N = 1000 and ry = 0.3. We also confirmed again that the choice of AR
order in the measurement model does not have a large impact on biases in TS-SNMMs
(Figure S16). From Figure 4, we can see that TS-SNMMs show a similar amount of biases
in each condition as the first simulation (i.e., Figure 2). Therefore, with the exception of
the conditions mentioned above, the biases were small in 7" > 4, but the overall results
became more accurate when 7' > 6.

Notably, both the first- and second-order effects have large positive biases (that exceed a
10% level of relative biases over true CDEs) in RI-CLPM, and the amounts of biases in RI-
CLPM exceed those in TS-SNMMs in most conditions when 7" > 4. This clearly indicates
that causal estimates from RI-CLPM can be seriously biased by model misspecification in
the form of omitted direct higher-order lagged effects of L* in the structural models, even
if there are no unobserved confounders U* in the DGP. On the other hand, estimates for
the opposite relation (Y* on X*) were similar to those in Figure 2 for both methods due
to there being no ignored direct higher-order effects in the structural model of X* (Figure
S17).

As shown in Table S4, similar tendencies were observed for the frequency of improper
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solutions as in the previous simulations. RI-CLPM often produces improper solutions when
¢? is as small as 0.1. Even for larger ¢, when T" and N are small as 7' = 4 and N = 200,
the observed proportions were more than 10%.

Like the previous simulation, we evaluated how model fit indices work to avoid referring
to estimation results from RI-CLPM. However, 94.63% of the estimation results from RI-
CLPM (that ignore direct second-order lagged effects) showed an SRMR lower than .05.
Likewise, 99.09% and 87.06% showed a CFT larger than .95 and an RMSEA lower than .05,
respectively (see Table S5). These proportions exceeded 30-50% on average, even when
T and N were small. Therefore, it seems very difficult to detect estimation biases caused
by misspecification in the form of omitted direct higher-order lagged effects of L* in the
structural model by using these model fit indices.

We have demonstrated that TS-SNMMs can be effectively used in many conditions
where longitudinal data with T" > 4 are available, and that more accurate causal estimates
can be obtained under some situations even if unobserved time-varying confounders and
model misspecifications exist, with a lower risk of obtaining improper solutions compared

with RI-CLPM.

5 EMPIRICAL APPLICATION

In this section, we describe an empirical application of TS-SNMMs using data from the
Tokyo Teen Cohort (TTC) study (Ando et al., 2019), which was also used in Usami (2023)
with T = 3 waves. We assume a similar causal DAG model to that in Figure 1. Namely,
we assume that measurements are expressed by the linear sum of stable trait factors and
WPVS. TTC is a longitudinal cohort study for investigating the psychological and physical
development of (N=3,171) adolescents in the Tokyo metropolitan area, and data for which
have been gathered in T' = 4 waves: from 2012 to 2015 (age 10), from 2014 to 2017 (age
12), from 2017 to 2019 (age 14), and from 2020 to 2022 (age 16).
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The focus of this analysis is on the reciprocal relations between sleep duration (X*)
and depressive symptoms (Y*), and we estimate the effects that past sleep duration (X*)
at ages 10, 12, and 14 has on later depressive symptoms (Y*) at age 16 (measured by the
Short Mood and Feelings Questionnaire; SMFQ, Angold et al., 1995), and vice versa, based
on the T' = 4 waves. Several epidemiological studies have suggested a relationship between
sleep habits (sleep duration, bedtime, and bedtime regularity) and mental health status
(depression and anxiety) in adolescents, and their reciprocal relations were investigated
by Matamura et al. (2014). However, this study did not account for unit effects (i.e.
stable traits) in sleep duration and depressive symptoms, and the relation at the within-
person level was also not investigated. In inferring the effects of sleep duration on depressive
symptoms, the statistical control of other sleep habits like bedtime may be key. However, as
illustrated in the previous simulation, controlling for observed confounders L* can introduce
collider bias via unobserved confounders U* that influence both L* and the outcome Y.
In this example, as U*, some life habits and the home environment (e.g., discipline from
parents, engagement in clubs/extracurricular activities in school) might affect the level of
depressive symptoms and bedtime. Therefore, the use of TS-SNMMs can be considered
a reasonable way to robustly estimate the CDEs and a joint effect of sleep duration over
time.

The SMFQ consists of 13 items that assess depressive symptoms (0: not true, 1: some-
times true, 2: true) related to feelings and actions over the preceding two weeks. Higher
SMFQ scores suggest more severe symptoms. Sleep duration in hours was measured by
the question “How long do you usually sleep on weekdays?” Bedtime was used as observed
confounders (L*), which was measured by the question “When do you usually go to bed on
weekdays?” In the present example, we focus on N = 1,294 adolescents who consistently
responded to these items during four waves. Descriptive statistics of these variables are
available in Table S6.

In the first step, we estimated the measurement model that assumes an AR(1) structure
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with time-varying autoregressive coefficients and residual variances in WPVS by MLE, and
WPVS were predicted for each variable. In the second step, we used the predicted WPVS
to estimate the CDEs of sleep duration at ages 10, 12, and 14 on depressive symptoms at
age 16 (i.e., CDEs of X7, X3, XJ on Y}"), and vice versa (i.e., CDEs of Y{*, Y5, Y5 on X}).
Models A and B were both specified based on first-order linear regression models (see the
specifications in the package DTRreg shown in Subsection 3.3). For the blip model, we
specified one that assumes interaction effects between predictors and observed confounders
measured at the same time point ¢ (e.g., X5L3 and X}Y5 on Y)"). For comparison, we also
applied RI-CLPM assuming AR(1) regressions that include L* (i.e., Equation (2), ignoring
interaction effects).

We confirmed that the first step did not produce improper solutions for each variable,
and that the specified AR(1) measurement model shows good fit in terms of the model fit
indices. Table S7 summarizes the model fit indices for each variable. Proportions of the
variances in measurements attributable to estimated stable trait factors at an initial time
(like the ¢ manipulated in the previous simulations) were calculated as 24.3%, 18.0%, and
27.2% for depressive symptoms, sleep duration, and bedtime, respectively. The ratio of
variance in WPVS at time ¢ = 4 to that at time ¢t = 1 (w) was 2.30, 1.45, and 2.22 for
depressive symptoms, sleep duration, and bedtime, respectively. The amounts of biases in
TS-SNMMs were pragmatically small in the previous simulations under the conditions for
the calculated ¢? and w.

Table 2 gives the estimated CDEs for reciprocal relations in TS-SNMMs and RI-CLPM,
respectively. Bootstrap was used in RI-CLPM to estimate standard errors.

As seen in Table 2, TS-SNMMs reveal that sleep duration at age 14 (X3) shows a
statistically significant effect for decreasing later depressive symptoms at age 16 (Y,") at
the within-person level (B;} = —0.305, 95%CI [-0.595, -0.016], p <.05: 1 hour longer sleep
for a person at age 14 decreases the SMFQ score of this person by 0.305 points at age

16), while the main effects for age 12 (X;) and 10 (X]) do not. A statistically significant
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interaction effect between sleep duration and depressive symptoms at age 12 (X;Y,") was
observed (¥;, = —0.173, 95%CI [-0.331, -0.016], p <.05: adolescents with higher depressive
symptoms at age 12 take larger effects on [decrease of] depressive symptoms at age 16 from
having more sleep), while such interaction effects were not observed at age 14 (X;Y5").

In the opposite relation, depressive symptoms at age 12 (Y5") show a small, but statis-
tically significant, main effect at increasing sleep durations at age 16 (X) (5%, = 0.018
[60x 0.018=1.08min increase], 95%CI [0.003, 0.032], p <.05), while the main effects from
ages 14 (Y5") and 10 (Y{*) do not. On the whole, the results were unchanged when using
AR(2) measurement models for each variable in the first step of TS-SNMMs (Table S8).
Similar positive effects of sleep duration on later depressive symptoms were found in a
previous study (Matamura et al., 2014). Usami (2023), which mainly focused on a clinical
group comprising N = 416 adolescents with SMFQ scores of 6 or higher during the study,
also demonstrated that increased sleep duration has positive effects on later depressive
Symptoms.

RI-CLPM produced similar results to those from TS-SNMMs in that the effects of sleep
duration at ages 12 (Xj) and 10 (X}) were not significant, but sleep duration at age 14
(X3) showed a significant effect for decreasing later depressive symptoms (Byﬂ = —0.901,
95%CI [-1.533, -0.282], p <.05). Compared with TS-SNMMs, (absolute value of) point
estimate is larger and indicates that a longer sleep duration has a more positive effect on
later depressive symptoms. On the other hand, depressive symptoms did not exhibit any
statistically significant effects on later sleep duration. The TTC study is now gathering
new data for a fifth wave, and further investigations with larger T" are desired.

As illustrated in this example, the statistical significance, sign, and magnitude of esti-
mates of CDEs might change depending on the choice of modeling and estimation approach
(i.e., RI-CLPM and TS-SNMMs). TS-SNMMs that can flexibly and robustly estimate pa-
rameters can be considered as potential alternatives of RI-CLPM (and its variants), and

comparing estimation results between these approaches as a sensitivity analysis should be
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useful.

6 DISCUSSION

In this paper, we provided a tutorial, simulation, and illustrative example of TS-SNMMs
to infer within-person (reciprocal) relations. This method assumes a DGP similar to RI-
CLPM, but we have shown through our simulations and the illustrative example that
TS-SNMMs have several advantages over RI-CLPM: (i) the flexible inclusion of curvilinear
(e.g., quadratic) and interaction effects of WPVS as latent variables, (ii) more accurate
estimates of causal parameters can be obtained under certain conditions due to them being
doubly robust, even if unobserved time-varying confounders and model misspecifications
exist, (iii) no models for (the distributions of ) observed time-varying confounders are needed
for estimation, and (iv) the risk of obtaining improper solutions can be decreased. We
showed in simulations that TS-SNMMs work well in many conditions if longitudinal data
with T > 4 are available, and more accurate estimates can be obtained if 7" becomes larger.

In psychology and related disciplines, the use of RI-CLPM has rapidly increased over the
past decade. Although researchers often wish to look at within-person (reciprocal) relations
from the perspective of causal inference, there are potential limitations in traditional SEM-
based approaches like RI-CLPM when it comes to accounting for time-varying confounders
(which relate to the ability to flexibly and robustly estimate causal parameters), and the
risk of obtaining improper solutions can present a challenge, especially when the sample
size is small. TS-SNMMs can be used as an alternative over RI-CLPM (and its variants),
especially when data with 7" > 4 are available and when improper solutions occur in
RI-CLPM. However, the purpose of this paper is not to completely denounce the use of RI-
CLPM. Comparing estimation results between these methods can be useful as a sensitivity
analysis, especially when either 7' is small or researchers are concerned with the presence

of unobserved time-varying confounders and model misspecifications.
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However, TS-SNMMs are also prone to possible pitfalls that practitioners should be
aware of. The number of time points 7' is an especially critical aspect. Most research aimed
at inferring reciprocal (within-person) relations has used longitudinal data with 7' = 2,3
(e.g., Usami, Todo et al., 2019), and imprecise predictions of WPVS can seriously degrade
the estimation performance in TS-SNMMs. All that said, in this case, the risk of producing
seriously biased estimates can increase even in RI-CLPM if model misspecifications exist.

In this paper, we assumed that each variable is a continuous. In principle, SNMMs can
handle both continuous or non-continuous treatment/predictors. However, in TS-SNMMs,
which aim to infer within-person relationships, there are currently several challenges re-
garding the handling of non-continuous variables. One such challenge is the lack of suf-
ficient investigation about prediction methods for WPVS in the first step when dealing
with non-continuous variables. Additionally, currently there are limitations in software
implementation, such as the inability of the package DTRreg to handle non-continuous
outcomes. On the other hand, in RI-CLPM as CSA, weighted-least squares (WLS) and
adjusted test statistics for ordinal categorical data are widely used.

Differences can also be observed between TS-SNMM and RI-CLPM in terms of han-
dling missing data. Specifically, for example, in the package DTRreg, listwise deletion is
performed when there are missing values. Therefore, in TS-SNMMs, especially when data
are MAR, an estimation combined with multiple imputation is desired (e.g., Loh & Ren,
2023a). On the other hand, in RI-CLPM, one advantage is the direct execution of missing
data handling and parameter estimation using FIML under the assumption of multivariate
normality of the data (e.g., Mulder & Usami et al., 2024).

In applying SNMMs researchers should carefully consider the order of lags for variables
in treatment and treatment-free (or, outcome) models according to the assumed DAG, and
it might be advisable to include both lag one and lag two effects, and possibly longer lags to
permit the possibility of more complex relations (e.g., Loh and Rens, 2023a). correct spec-

ification of the measurement model in the first step can also be challenging. Fortunately,
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both current simulations and Usami (2023) have shown that even (misspecified) models
with a time-varying AR(1) structure for WPVS produce accurate estimates, and that the
choice of order has little influence on estimation performance. However, further investiga-
tions of estimation performance that account for various misspecifications in measurement
models are still required, and comparisons with other recent estimation approaches (e.g.,
Du & Bentler, 2021; Du, Bentler & Rosseel, 2022) for parameters in measurement models,
especially for data with non-normal or small N, will also be an important topic for future
studies.

Another important but still unresolved issue is how to establish the correct (or even
a plausible) DAG model, or how one can validate the incorporation of time-invariant fac-
tors, such as stable trait factors, to infer within-person relations. To identify the causal
parameters, we assumed that measurements are expressed by the linear sum of stable trait
factor scores and WPVS, as in RI-CLPM. Usami, Murayama et al. (2019) explained that
there are two primary ways to statistically control for time-invariant factors as individual
differences: using stable trait factors included in RI-CLPM that have only direct effects on
measurements and are uncorrelated with within-person processes (i.e., WPVS), and using
the accumulating factors included in several other statistical models (e.g., Bollen & Brand,
2010), which have both direct and indirect effects on measurements. In these models, accu-
mulating factors are modeled with lagged regressions rather than being modeled separately
from them (see Usami, 2023 for further details and the corresponding DGP).

The discussion of issues surrounding the appropriate model choice and the potential
difference of inferential results among statistical models when inferring within-person re-
lations is ongoing, and it continues to gather attention from quantitative researchers in
psychology (e.g., Andersen, 2022; Hamaker, 2023; Lucas, 2022; Liidtke & Robitzsch, 2021;
Muthén & Asparouhov, in press; Murayama & Gfrorer, 2024; Usami, 2022,2023). Though
our attention in this paper was on TS-SNMMs that assume stable traits factors in DGP,

if an uncorrelated assumption of between- and within-person processes is violated, then
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both RI-CLPM and TS-SNMMs can produce seriously biased estimates. One can resort to
substantial theory to choose the model (e.g., Shehata et al., 2021; who argued that some
statistical models that include stable trait factors, such as a constrained version of RI-
CLPM, are well suited to model between- and within-person components when capturing
maintenance effects in communication research). However, in many cases, researchers do
not exactly know the true DGP and how time-invariant factors (if they exist) influence mea-
surements (e.g., linearly or nonlinearly, directly or indirectly, or both), and unambiguous
specification of the theoretically derived expected relations for variables is quite challenging
in practical applications (e.g., Curran & Bauer, 2011; Usami, 2023). Further discussion
accounting for the sensitivity of results through empirical analyses will be required in the
future (Usami, 2023). The extensions of TS-SNMMs that account for accumulating fac-
tors (i.e., correlated within-person and between-person processes) and measurement errors,
along with developing a package to further increase the feasibility of T'S-SNMMs, are also

important future research goals.
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Table 1. Proportion of improper solutions in each condition.

T=3 T=4 T=6 T=9
RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs

9?=0.1 N=200  86.53% 19.24%  76.82% 563%  58.00% 0.62%  37.15% 0.03%
N=600  74.45% 2.92%  55.45% 0.18%  28.27% 0.00%  10.11% 0.00%
N=1000  65.32% 0.66%  42.34% 0.00%  16.87% 000%  3.78% 0.00%
©?=04 N=200  39.52% 139%  15.31% 001%  2.50% 0.00%  0.24% 0.00%
N=600  11.92% 0.00% 1.61% 0.00%  0.06% 0.00%  0.00% 0.00%
N=1000 5.67% 0.00%  0.45% 0.00%  0.00% 0.00%  0.00% 0.00%
9?=07 N=200  26.01% 5.44%  7.46% 0.69%  0.63% 0.00%  0.04% 0.00%
N=600 2.23% 0.09%  0.20% 0.00%  0.00% 0.00%  0.00% 0.00%
N=1000 0.51% 000%  0.02% 0.00%  0.00% 0.00%  0.00% 0.00%

@2, (proportion of) stable trait factor variances at t=1; T, the number of time points; N, sample size; RI-CLPM, random
intercept cross-lagged panel model; TS-SNMMs, two step estimation approach with structural nested mean model.
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Table 2. Estimated controlled direct effects for reciprocal relations in TS-SNMMs and RI-CLPM

TS-SNMMs RI-CLPM

Sleep—SMFQ Estimate SE Estimate SE
Sleep 3 — SMFQ 4 -0.305 0.148 -0.901 0.321
(Sleep 3 x Bedtime 3) — SMFQ 4 0.057 0.092
(Sleep 3 x SMFQ 3) — SMFQ 4 -0.030 0.070
Sleep 2 — SMFQ 4 -0.289 0.249 -0.255 0.157
(Sleep 2 x Bedtime 2) — SMFQ 4 -0.601 0.629
(Sleep 2 x SMFQ 2) — SMFQ 4 -0.173 0.080
Sleep 1 — SMFQ 4 0.300 0.514 -0.071 0.059
(Sleep 1 x Bedtime 1) — SMFQ 4 0.178 1.324
(Sleep 1 x SMFQ 1) — SMFQ 4 0.104 0.095

SMFQ—Sleep Estimate SE Estimate SE
SMFQ 3 — Sleep 4 0.000 0.007 0.001 0.008
(SMFQ 3 x Bedtime 3) — Sleep 4 0.017 0.017
(SMFQ 3 x Sleep 3) — Sleep 4 0.010 0.018
SMFQ 2 — Sleep 4 0.018 0.007 0.000 0.003
(SMFQ 2 x Bedtime 2) — Sleep 4 -0.007 0.018
(SMFQ 2 x Sleep 2) — Sleep 4 0.007 0.018
SMFQ 1 — Sleep 4 0.009 0.007 0.002 0.001
(SMFQ 1 x Bedtime 1) — Sleep 4 0.055 0.021
(SMFQ 1 x Sleep 1) — Sleep 4 0.048 0.020

Bold font indicates statistical significance.

standard error.

Sleep, sleep duration; SMFQ, Short Mood and Feelings Questionnaire; SE,
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Figure 1. The linear causal diagrams (DAGS) for data-generating process in which stable trait
factors are included. Solid single-headed arrows (directed edges) are labeled with path
coefficients that quantify direct causal effects. A dashed double-headed arrow (bidirected edge)
represents a correlation due to an unobserved common cause. Stable trait factors are represented
in dashed circles, indicating that these are latent variables.
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@2, (proportion of) stable trait factor variances at t=1; T, the number of time points; rg, correlation between stable
trait factors; w, ratio of variance of within-person variability scores at t=T to that at t=1; The dashed lines represent
the true values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and the deviation from
these lines indicates the bias. RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation
approach with structural nested mean model.

Figure 2. Averages of estimated CDEs of X* on Y* in TS-SNMMs and the RI-CLPM.
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@2, (proportion of) stable trait factor variances at t=1; T, the number of time points; rg, correlation between stable

trait factors; w, ratio of variance of within-person variability scores at t=T to that at t=1; The dashed lines represent
the true values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and the deviation from
these lines indicates the bias. RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation

approach with structural nested mean model.

Figure 3. Averages of estimated CDEs of X* on Y* in TS-SNMMs and the RI-CLPM when there
exist unobserved confounders U* that influence the observed time-varying confounders L* and

the outcomes Y*.
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@2, (proportion of) stable trait factor variances at t=1; T, the number of time points; rg, correlation between stable
trait factors; w, ratio of variance of within-person variability scores at t=T to that at t=1; The dashed lines represent
the true values (0.20 for the first-order controlled direct effect and 0.10 for the second-order), and the deviation from
these lines indicates the bias. RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation
approach with structural nested mean model.

Figure 4. Averages of estimated CDEs of X* on Y* in TS-SNMMs and the RI-CLPM when there

exist ignored direct higher-order effects of observed time-varying confounders L* on outcomes
Y*.
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Table S1.

Results of ANOVA where calculated biases are set as outcomes.

First-order effect of X* on Y*

Second-order effect of X* on Y*

2

2

df SS MS n Ss MS n
3 001967  0.00656 0.046  0.2079 0.06931  0.098
2 000096  0.00048 0002  0.0197 0.00984  0.009
@2 2 001969  0.00984 0046  0.1288 0.06440  0.061
s 2 010741  0.05370 0248  0.4273 021363  0.202
T 2 007047 003523 0163  0.0904 0.04519  0.043
® 2 003781 001890 0087  0.1694 0.08468  0.080
TxN 6 000113  0.00019 0003  0.0193 0.00322  0.009
Txg? 6 000039  0.00007 0001  0.0969 0.01614  0.046
Nxp?2 4 000064 000016 0001  0.0014 0.00036  0.001
Txry 6 001916  0.00319 0044  0.2351 003919  0.111
Nixrsg 4 000054 000014 0001  0.0003 0.00008  0.000
P2xry 4 002665  0.00666 0.062  0.1297 0.03242  0.061
Txry, 6 001808  0.00301 0042  0.0176 0.00294  0.008
Nxr, 4 000069  0.00017 0002  0.0001 0.00002  0.000
@2x1y 4 000564 000141 0013  0.0647 0.01619  0.031
T XTyy 4 000025  0.00006 0001  0.0036 0.00090  0.002
Txo 6 000008  0.00001 0000  0.1114 0.01856  0.053
Nxo 4 000004  0.00001 0.000  0.0030 0.00076  0.001
P2x® 4 001232 000308 0029  0.0034 0.00084  0.002
Texo 4 002303 000576 0.053  0.0003 0.00006  0.000
T X0 4 000819 000205 0019  0.0047 0.00119  0.002
TxNx¢? 12 000202  0.00017 0.005  0.0103 0.00086  0.005
TxNxry 12 000081  0.00007 0.002  0.0006 0.00005  0.000
Tx@2xry 12 000730  0.00061 0.017  0.0966 0.00805  0.046
Nx¢p2xry 8 000024  0.00003 0001  0.0006 0.00008  0.000
TxNxr, 12 000091  0.00008 0.002  0.0010 0.00009  0.000
Txg?xr, 12 000360  0.00030 0.008  0.0652 0.00543  0.031
Nx¢2xr, 8 000027  0.00003 0001  0.0006 0.00007  0.000
TxrpXry, 12 000028  0.00002 0.001  0.0060 0.00050  0.003
Nxr XT3y, 8 000048  0.00006 0001  0.0007 0.00009  0.000
P2 xXTgXTy 8 000047  0.00006 0001  0.0014 0.00017  0.001
TxNxo 12 000080  0.00007 0.002  0.0103 0.00086  0.005
Txg2xo 12 000068  0.00006 0.002  0.0109 0.00091  0.005



Nx@?xm
Txrgxe®
NXrpxo
P*xrgx0
Txryxo
NX7y, X
Px1yx0
T X1y X®
TxNx@p2xrg
TxNx@?xry,
TxNxrg X1y,
Tx@?xrgxry,
Nx@?xrgXry,
TXNX(pZX(D
TxNxrgxw
Tx@p2xrg*xm
Nx@2xrg X
TxNx1y, x@®
Tx@2X1, X0
NXx@2 X7, %m
Txrgxry x®
NX7p X1, X0
QXX X1, X ®
TxNx@Zxrgxry,
TxNx@2xrgxm
TxNx@2xry, xo
TXNXrg X1y, X®
Tx@2X15 X1y, X®
NX@2Xrg X170 X0
TXNX@2 X1 X17, X0

Total

24
24
24
24
16
24
24
24
16
24
24
16
24
16
16
48
48
48
48
48
32
96
971

0.00044
0.00400
0.00021
0.00561
0.00249
0.00033
0.00113
0.00070
0.00087
0.00060
0.00059
0.00101
0.00069
0.00321
0.00097
0.00157
0.00053
0.00088
0.00125
0.00053
0.00063
0.00072
0.00063
0.00158
0.00210
0.00114
0.00196
0.00135
0.00111
0.00273
0.43226

0.00006
0.00033
0.00003
0.00070
0.00021
0.00004
0.00014
0.00009
0.00004
0.00002
0.00002
0.00004
0.00004
0.00013
0.00004
0.00007
0.00003
0.00004
0.00005
0.00003
0.00003
0.00005
0.00004
0.00003
0.00004
0.00002
0.00004
0.00003
0.00003
0.00003

0.001
0.009
0.000
0.013
0.006
0.001
0.003
0.002
0.002
0.001
0.001
0.002
0.002
0.007
0.002
0.004
0.001
0.002
0.003
0.001
0.001
0.002
0.001
0.004
0.005
0.003
0.005
0.003
0.003
0.006

0.0001
0.0391
0.0008
0.0012
0.0312
0.0006
0.0030
0.0008
0.0013
0.0005
0.0031
0.0025
0.0010
0.0069
0.0019
0.0158
0.0018
0.0020
0.0142
0.0008
0.0042
0.0028
0.0005
0.0024
0.0066
0.0043
0.0065
0.0031
0.0027
0.0103
2.1121

0.00012
0.00326
0.00010
0.00015
0.00260
0.00008
0.00038
0.00009
0.00005
0.00002
0.00013
0.00010
0.00006
0.00029
0.00008
0.00066
0.00011
0.00008
0.00059
0.00005
0.00018
0.00017
0.00003
0.00005
0.00014
0.00009
0.00014
0.00006
0.00009
0.00011

0.000
0.019
0.000
0.001
0.015
0.000
0.001
0.000
0.001
0.000
0.001
0.001
0.000
0.003
0.001
0.007
0.001
0.001
0.007
0.000
0.002
0.001
0.000
0.001
0.003
0.002
0.003
0.001
0.001
0.005




Table S2. Proportions of improper solutions in each condition (second simulation).

T=3 T=4 T=6 T=9
RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs

©?=0.1 N=200  85.59% 14.75%  76.63% 3.60%  65.26% 0.33%  55.52% 0.01%
N=600  72.79% 1.90%  57.13% 007%  44.93% 0.00%  39.11% 0.00%
N=1000  63.13% 040%  46.52% 000%  37.11% 000%  32.64% 0.00%
©?=04 N=200  43.33% 2.34%  23.14% 013%  9.49% 000%  2.59% 0.00%
N=600  13.26% 005%  4.52% 000%  0.96% 000%  0.02% 0.00%
N=1000 6.44% 0.00% 1.68% 000%  0.18% 0.00%  0.00% 0.00%

©?=07 N=200  31.89% 9.46%  13.93% 2.30%  3.50% 0.00%  0.42% 0.00%
N=600 5.67% 061%  0.56% 004%  0.00% 0.00%  0.00% 0.00%
N=1000 1.32% 007%  0.22% 002%  0.00% 000%  0.00% 0.00%

RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation approach with a

structural nested mean model.



Table S3. Proportions of observed values that exceeded prespecified criteria for model fit indices (second simulation).

T=3 T=4 T=6 T=9
SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFl RMSEA SRMR CFlI RMSEA
<05 >95 <05 <05 >95 <05 <05 >95 <05 <05 >95 <05
9?=0.1 N=200 100.00% 99.80% 80.24% 99.89% 99.74% 93.04% 98.07% 99.69% 99.41% 79.24% 99.72% 100.00%
N=600 100.00% 100.00% 94.11% 100.00% 100.00% 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
N=1000 100.00% 100.00% 98.11% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
@?=0.4 N=200 100.00% 99.98% 80.54% 99.81% 100.00% 93.67% 97.11% 100.00% 99.31% 78.65% 100.00% 100.00%
N=600 100.00% 100.00% 93.78% 100.00% 100.00% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
N=1000 100.00% 100.00% 98.37% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
©?=0.7 N=200 100.00% 100.00% 83.19% 99.85% 100.00% 94.20% 95.59% 100.00% 99.20% 81.81% 100.00% 100.00%
N=600 100.00% 100.00% 94.54% 100.00% 100.00% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
N=1000 100.00% 100.00% 98.56% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

mean square residual.

CFI, comparative fit index; RMSEA, root mean square error of approximation; SRMR, standardized root



Table S4. Proportions of improper solutions in each condition (third simulation).

T=3 T=4 T=6 T=9

RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs RI-CLPM TS-SNMMs

©?=0.1 N=200  87.88% 17.05%  79.12% 357%  59.02% 0.18%  33.57% 0.01%
N=600  82.67% 2.62%  66.47% 007%  32.26% 0.00%  9.83% 0.00%
N=1000  80.42% 061%  60.35% 000%  25.02% 000%  5.42% 0.00%
©?=04 N=200  36.28% 2.15%  10.74% 0.04% 1.54% 000%  0.09% 0.00%
N=600 5.37% 000%  0.24% 000%  0.00% 000%  0.00% 0.00%
N=1000 1.10% 0.00%  0.00% 0.00%  0.00% 0.00%  0.00% 0.00%

©?=07 N=200  26.26% 6.62%  11.61% 132%  2.94% 000%  0.52% 0.00%
N=600 3.62% 0.16%  0.69% 0.00%  0.00% 0.00%  0.00% 0.00%
N=1000 1.16% 004%  0.16% 000%  0.00% 000%  0.00% 0.00%

RI-CLPM, random intercept cross-lagged panel model; TS-SNMMs, two-step estimation approach with a

structural nested mean model.



Table S5. Proportions of observed values that exceeded prespecified criteria for model fit indices (third simulation).
T=3 T=4 T=6 T=9

SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA
<.05 >.95 <.05 <.05 >.95 <.05 <.05 >.95 <.05 <.05 >.95 <.05
92=01 N=200 99.98%  99.31%  60.00% 96.98%  96.94%  69.81% 87.06%  92.59%  86.20%  33.67%  81.33%  98.54%
N=600 100.00% 100.00%  52.24% 100.00%  99.94%  77.94% 100.00% 99.80%  98.74% 100.00%  99.76%  100.00%
N=1000 100.00% 100.00%  52.46% 100.00% 99.98%  80.15% 100.00% 100.00%  99.63% 100.00% 100.00%  100.00%
©?=04 N=200 100.00% 100.00%  67.35%  98.09%  99.78%  76.63%  87.89%  99.35%  88.48%  47.80%  98.56%  98.46%
N=600 100.00% 100.00%  66.37% 100.00% 100.00%  89.57% 100.00% 100.00%  99.65% 100.00% 100.00%  100.00%
N=1000 100.00% 100.00%  64.28% 100.00% 100.00%  93.26% 100.00% 100.00%  99.98% 100.00% 100.00%  100.00%
®2=07 N=200 100.00% 100.00%  7541%  99.17% 100.00%  85.39%  88.26% 100.00%  92.83%  68.19% 100.00%  98.93%
N=600 100.00% 100.00%  81.04% 100.00% 100.00%  97.20%  99.80% 100.00%  99.89%  99.93% 100.00%  100.00%
N=1000 100.00% 100.00%  84.59% 100.00% 100.00%  99.00% 100.00% 100.00%  100.00% 100.00% 100.00%  100.00%

CFI, comparative fit index; RMSEA, root mean square error of approximation; SRMR, standardized root

mean square residual.



Table S6. Descriptive statistics.

(&) Mean and standard deviation

BT10 SD10 SMFQ10 BT12 SD12 SMFQl2 BT14 SD14 SMFQ14 BT16 SD16 SMFQ16
Mean 21.71 9.03 449 2225 8.48 3.67 23.10 7.65 3.03 23.72 7.01 3.66
standard 53 03 446 073 074 430 081 086 453 086 090 519
deviation
(b) Variances, covariances, and correlations
BT10 SD10 SMFQ10 BT12 SD12 SMFQl12 BT14 SD14 SMFQ14 BT16 SD16 SMFQ16
BT10 0.40 -0.75 0.11 0.64 -0.46 0.06 0.38 -0.28 0.09 024  -0.16 0.10
SD10 -0.30 0.39 -0.04  -0.44 0.55 -0.04  -0.22 0.34 -0.05 -0.14 0.17 -0.06
SMFQ10 0.30 -0.11 19.90 0.04 0.00 0.41 0.04 0.04 0.27 0.02 0.05 0.18
BT12 0.29 -0.20 0.12 0.53 -0.77 0.07 0.48 -0.40 0.10 0.26 -0.19 0.12
SD12 -0.21 0.25 0.02 -0.42 0.55 -0.06 -0.32 0.48 -0.08 -0.16 0.22 -0.11
SMFQ12 0.16 -0.10 7.87 0.23 -0.19 18.51 0.05 0.00 0.36 0.02 0.06 0.29
BT14 0.19 -0.11 0.16 0.28 -0.19 0.16 0.65 -0.67 0.14 0.47 -0.32 0.12
SD14 -0.15 0.18 0.13 -0.25 0.30 0.00 -0.47 0.74 -0.08 -0.28 0.43 -0.12
SMFQ14 0.26 -0.15 5.39 0.34 -0.27 7.12 0.53 -0.29 20.58 0.11 -0.02 0.44
BT16 0.13 -0.08 0.09 0.16 -0.10 0.06 0.33 -0.20 0.42 0.75 -0.60 0.13
SD16 -0.09 0.09 0.19 -0.12 0.15 0.21 -0.23 0.33 -0.06 -0.47 0.81 -0.07
SMFQ16 0.32 -0.19 4.05 0.47 -0.42 6.38 0.49 -0.52 10.33 0.59 -0.31 26.92

* BT, bedtime; SD, sleep duration; SMFQ, Short Mood and Feelings Questionnaire.

Variances are in the diagonal elements, covariances are in the lower-left elements, and correlations are
in the upper-right elements.



Table S7.

Fit indices of the AR(1) measurement model for each variable.

Bedtime Sleep duration SMFQ
No. of parameters 8 8 8
df 2 2 2
chi-square 2.507 7.325 7.788
p-value 0.285 0.026 0.020
CFlI 1 0.995 0.992
RMSEA 0.014 [0.000, 0.059] 0.045 [0.014, 0.083] 0.047 [0.016, 0.084]
SRMR 0.011 0.018 0.018

Model fits are perfect for the AR(2) measurement model.



Table S8. Estimated conditional direct effects from TS-SNMMs with AR(2) measurement models.

TS-SNMMs
Sleep—SMFQ Estimates SE
Sleep 3 — SMFQ 4 -0.290 0.143
Sleep 3 x Bedtime 3 — SMFQ 4 0.033 0.094
Sleep 3 x SMFQ 3 — SMFQ 4 -0.027 0.066
Sleep 2 — SMFQ 4 -0.198 0.258
Sleep 2 x Bedtime 2 — SMFQ 4 -0.655 0.620
Sleep 2 x SMFQ 2 — SMFQ 4 -0.161 0.074
Sleep 1 — SMFQ 4 0.382 0.501
Sleep 1 x Bedtime 1 — SMFQ 4 0.223 1.260
Sleep 1 x SMFQ 1 — SMFQ 4 0.101 0.091
SMFQ—Sleep Estimates SE
SMFQ 3 — Sleep 4 -0.003 0.007
SMFQ 3 x Bedtime 3 — Sleep 4 0.016 0.015
SMFQ 3 x Sleep 3 — Sleep 4 0.008 0.015
SMFQ 2 — Sleep 4 0.015 0.007
SMFQ 2 x Bedtime 2 — Sleep 4 -0.009 0.017
SMFQ 2 x Sleep 2 — Sleep 4 0.003 0.016
SMFQ 1 — Sleep 4 0.004 0.007
SMFQ 1 x Bedtime 1 — Sleep 4 0.050 0.022
SMFQ 1 x Sleep 1 — Sleep 4 0.043 0.020

Bold font indicates statistical significance.
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Figure S1. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM.
(N=1000 and ry,= 0.3)
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(N=600 and 1= 0.3)
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(N=1000 and ry,,= 0.1)
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Figure S9. RMSEs of estimated CDEs of X* on Y* in TS-SNMM s and RI-CLPM.
(N=1000 and ry,,= 0.5)
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Figure S10. Averages of estimated CDEs of Y* on X* in TS-SNMM s and RI-CLPM.
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Figure S11. RMSEs of estimated CDEs of Y* on X* in TS-SNMMs and RI-CLPM.
(N=1000 and ry,= 0.3)
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Figure S12. Averages of estimated CDEs of X* on Y* in TS-SNMM s and RI-CLPM.
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Figure S13. RMSEs of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM.
(AR(2) measurement model; NV=1000 and ry,= 0.3)
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Figure S14. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM when there
exist unobserved confounders U* that influence observed time-varying confounders L* and
outcomes Y* (AR(2) measurement model; V=1000 and 3,,= 0.3).
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Figure S15. Averages of estimated CDEs of Y* on X* in TS-SNMMs and RI-CLPM when there
exist unobserved confounders U* that influence observed time-varying confounders L* and
outcomes Y* (NV=1000 and r;,,= 0.3).
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Figure S16. Averages of estimated CDEs of X* on Y* in TS-SNMMs and RI-CLPM when there
exist ignored direct higher-order effects of observed time-varying confounders L* on outcomes
Y* (AR(2) measurement model; V=1000 and r;,= 0.3).
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Figure S17. Averages of estimated CDEs of Y* on X* in TS-SNMMs and RI-CLPM when there
exist ignored direct higher-order effects of observed time-varying confounders L* on outcomes
Y* (N=1000 and r3,,= 0.3).
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